• Title/Summary/Keyword: a inference

Search Result 2,846, Processing Time 0.028 seconds

Effective Design of Inference Rule for Shape Classification

  • Kim, Yoon-Ho;Lee, Sang-Sock;Lee, Joo-Shin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.417-422
    • /
    • 1998
  • This paper presents a method of object classification from dynamic image based on fuzzy inference algorithm which is suitable for low speed such as, conveyor, uninhabited transportation. At first, by using feature parameters of moving object, fuzzy if - then rule that can be able to adapt the wide variety of surroundings is developed. Secondly, implication function for fuzzy inference are compared with respect the proposed algorithm. Simulation results are presented to testify the performance and applicability of the proposed system.

  • PDF

A Formal Model and a Design of Inference Engine for Context-Aware Mobile Computing (컨텍스트 인지 모바일 컴퓨팅을 위한 정형모델 및 추론 시스템 설계)

  • Kim, Moon Kwon;Kim, Soo Dong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-250
    • /
    • 2013
  • Context-aware mobile computing has become the primary approach to realize automatic, autonomous, and user-centric computing in the context of largely increasing the amount of mobile devices used that embed available sensors. However, designing an inference engine nonetheless requires the tasks of analyzing contexts, situations that can be inferred, etc. Moreover, a mobile device has limited resources and limited computation capability, which results in recognizing the common sense of its unsuitable environment for processing inference. Hence, we propose context-situation reasoning elements and their formal models in this paper, and we verify the formal models' applicability by applying them to an example. Finally, we design and implement an inference engine that realize the context-situation inference elements in computing environment, and we experiment an example by using the proposed inference engine to verify applicability and reusability of the inference engine.

Modular Fuzzy Inference Systems for Nonlinear System Control (비선형 시스템 제어를 위한 모듈화 피지추론 시스템)

  • 권오신
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.395-399
    • /
    • 2001
  • This paper describes modular fuzzy inference systems(MFIS) with adaptive capability to extract fuzzy inference modules from observation data through the learning process. The proposed MFIS is based on the structural similarity to Tagaki-Sugeno fuzzy models and a modular neural architecture. The learning of MFIS is done by assigning new fuzzy inference modules and by updating the parameters of existing modules. The fuzzy inference modules consist of local model network and fuzzy gating network. The parameters of the MFIS are updated by the standard LMS algorithm. The performance of the MFIS is illustrated with adaptive control of a nonlinear dynamic system.

  • PDF

Knowledge Extractions, Visualizations, and Inference from the big Data in Healthcare and Medical

  • Kim, Jin Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.400-405
    • /
    • 2013
  • The purpose of this study is to develop a composite platform for knowledge extractions, visualizations, and inference. Generally, the big data sets were frequently used in the healthcare and medical area. To help the knowledge managers/users working in the field, this study is focused on knowledge management (KM) based on Data Mining (DM), Knowledge Distribution Map (KDM), Decision Tree (DT), RDBMS, and SQL-inference. The proposed mechanism is composed of five key processes. Firstly, in Knowledge Parsing, it extracts logical rules from a big data set by using DM technology. Then it transforms the rules into RDB tables. Secondly, through Knowledge Maintenance, it refines and manages the knowledge to be ready for the computing of knowledge distributions. Thirdly, in Knowledge Distribution process, we can see the knowledge distributions by using the DT mechanism.Fourthly, in Knowledge Hierarchy, the platform shows the hierarchy of the knowledge. Finally, in Inference, it deduce the conclusions by using the given facts and data.This approach presents the advantages of diversity in knowledge representations and inference to improve the quality of computer-based medical diagnosis.

Effects of Model Complexity, Structure and Objective Function on Calibration Process (모형의 복잡성, 구조 및 목적함수가 모형 검정에 미치는 영향)

  • Choi, Kyung Sook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.89-97
    • /
    • 2003
  • Using inference models developed for estimation of the parameters necessary to implement the Runoff Block of the Stormwater Management Model (SWMM), a number of alternative inference scenarios were developed to assess the influence of inference model complexity and structure on the calibration of the catchment modelling system. These inference models varied from the assumption of a spatially invariant value (catchment average) to spatially variable with each subcatchment having its own unique values. Fur-thermore, the influence of different measures of deviation between the recorded information and simulation predictions were considered. The results of these investigations indicate that the model performance is more influenced by model structure than complexity, and control parameter values are very much dependent on objective function selected as this factor was the most influential for both the initial estimates and the final results.

A Case Study on Using Uncritical Inference Test to Promote Malaysian College Students' Deeper Thinking in Organic Chemistry

  • Kan, Su-Yin;Cha, Jeongho;Chia, Poh Wai
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.2
    • /
    • pp.156-163
    • /
    • 2015
  • In Malaysia, the students' poor performance in mathematics and sciences needs immediate attention and remedies. In order to tackle this problem, an active learning environment that encourages students' question-asking capability must be molded. Transformation from traditional teacher-based approach to active-learning classroom is the key to develop question-asking capability. The classroom activity that the authors used in this study is based on the uncritical inference test to promote students' deeper thinking which encouraged students to verify facts that was previously learnt in classroom through group discussion activity. Three sets of uncritical inference test were developed and applied to Malaysian college course of basic organic chemistry. Students' answers to the impact of using uncritical inference test with a group discussion on learning and communication skills were positive.

Analysis of the Deductive Inference in Engineering Education through the Experiment of Elliptical Trainers (Elliptical Trainer의 실험 분석을 통한 공학교육에 적용되는 귀납법적 추론 분석)

  • Hwang, Un Hak
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.5 no.1
    • /
    • pp.1-13
    • /
    • 2013
  • For a basic engineering education the confirmation and verification of the deductive Inference was studied and the principle of probability inference was applied. The background of introduction of deductive Inference and its test method was mentioned, and historic arguments on the compatibility of deductive statistical inference was summarized and analyzed. Philosophical arguments on the deductive confirmation for engineering experiments was introduced. Premise, procedure, and control of the experiments are studied. As an example of the deductive probability inference three groups of experimental data were used in order to find successful inferences respectively.

  • PDF

Fast Fuzzy Inference Algorithm for Fuzzy System constructed with Triangular Membership Functions (삼각형 소속함수로 구성된 퍼지시스템의 고속 퍼지추론 알고리즘)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • Almost applications using fuzzy theory are based on the fuzzy inference. However fuzzy inference needs much time in calculation process for the fuzzy system with many input variables or many fuzzy labels defined on each variable. Inference time is dependent on the number of arithmetic Product in computation Process. Especially, the inference time is a primary constraint to fuzzy control applications using microprocessor or PC-based controller. In this paper, a simple fast fuzzy inference algorithm(FFIA), without loss of information, was proposed to reduce the inference time based on the fuzzy system with triangular membership functions in antecedent part of fuzzy rule. The proposed algorithm was induced by using partition of input state space and simple geometrical analysis. By using this scheme, we can take the same effect of the fuzzy rule reduction.

Do Foreign Direct Investment, Energy Consumption and Urbanization Enhance Economic Growth in Six ASEAN Countries?

  • LONG, Nguyen Tien
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.12
    • /
    • pp.33-42
    • /
    • 2020
  • The neoclassical economic supporters have suggested that foreign direct investment and raw material (e.g., coal, electricity, gas, and oil) are critical economic growth inputs. Few previous studies have analyzed the relationship between foreign direct investment and energy consumption on economic growth. However, existing studies usually have applied the frequentist inference. The limitation of the frequentist inference is that, if the coefficient of the independent variable is not yet significant, then conclusions might be unreliable. By applying the Bayesian approach, the main aim of this study is to revisit the impact of foreign direct investment, electricity consumption, and urbanization on economic growth in six ASEAN countries from 1980 to 2016. The obtained outcome shows that the impact of electricity consumption is evident and positive on economic growth in both frequentist and Bayesian inferences. However, the influence of foreign direct investment is not identified by frequentist inference, while Bayesian inference provides evidence that foreign direct investment is a moderately positive impact on economic growth. The empirical result from Bayesian inference contributes to the literature on foreign direct investment modeling and could be of significant importance for a more efficient foreign direct investment attracting and achieve sustainability in the long-term.

Z. Cao's Fuzzy Reasoning Method using Learning Ability (학습기능을 이용한 Z. Cao의 퍼지추론방식)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1591-1598
    • /
    • 2008
  • Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. In this paper, we propose Z. Cao's fuzzy inference method with learning ability which is used a gradient descent method in order to improve the performances. It is hard to determine the relation matrix elements by trial and error method. Because this method is needed many hours and effort. Simulation results are applied nonlinear systems show that the proposed inference method using a gradient descent method has good performances.