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Effects of Model Complexity, Structure and Objective
Function on Calibration Process
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Abstract

Using inference models developed for estimation of the parameters necessary to implement the Runoff
Block of the Stormwater Management Model (SWMM), a number of alternative inference scenarios were
developed to assess the influence of inference model complexity and structure on the calibration of the
catchment modeiling system. These inference models varied from the assumption of a spatially invariant
value (catchment average) to spatially variable with each subcatchment having its own unique values. Fur-
thermore, the influence of different measures of deviation between the recorded information and simulation
predictions were considered. The results of these investigations indicate that the model performance is more
influenced by model structure than complexity, and control parameter values are very much dependent on
objective function selected as this factor was the most influential for both the initial estimates and the final
results.
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1. Introdugction

In general, the calibration process involves
minimisation of the deviation between monitored
information and simulation predictions through

repeated adjustment of parameters. Implemen—
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tation of this process requires temporal and
spatial information at an adequate resolution to
achieve robust predictions from a catchment
modelling system. Unfortunately, the available
information usually is not adequate for this
purpose. Especially, when a spatially distributed,
physically based catchment modelling system is
employed, the accurate estimation of control
parameters is very difficult since modelling
systems use a large number of parameters to
describe complex processes within the catch—
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ment. Therefore, it becomes necessary to either
use catchment average values or to use other
techniques to infer the necessary information.
Developments in information technology and the
availability of digital information have facilitated
the later approach (see for example Choi and
Ball, 2002). As presented in Choi and Ball
(2002), the proposed approach is to adopt the
concept implicitly implemented with the use of
inferred parameters, this concept is based on the
application of an inference model to determine
the value of the control parameter.

Based on this concept, further extensive case
studies were performed to examine the per—
formance of the proposed calibration approach in
association with different numbers of model
control parameters with different structure of the
model. Ten different inference scenarios were
designed for this purpose. Additionally, several
objective functions were also employed to
examine their influences on the model calibration
results.

In order to assist the calibration process,
L_BFGS_B
algorithm) developed by the Optimisation Tech—

(limited memory quasi—Newton

nology Center, Argonne National Laboratory and
Northwestern University was employed. This
algorithm was particularly designed for solving
large nonlinear optimisation problems with
simple bounds on the variables.

Presented herein is the results of these
Investigations into the complexity and structure
of models and objective functions used in the
calibration process.
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1. Study Catchment

The Centennial Park catchment was used as a
test catchment for this study. The Centennial
Park catchment is located in the eastern suburbs
of Sydney, Australia as shown in Fig. 1.

The total area of the catchment is 132.7ha, and
the average subcatchment slope is about 5.3%.
The geological composition of the catchment is
Botany sands containing mainly two sand soil
types, Hammondville Soil (85%) and Moore Soil
(15%).

There are seven different landuses within the

Fig. 1 Location of Centennial Park catchment

Table 1 Landuse within Centennial Park catchment

Landuse types ﬁ::? Per<(:<;:§age
Special building 165 124
Road and street 3038 232
Low residential 216 16.3
Medium residential 20.8 15.7
High residential 10.8 81
Open space and park 28.7 216
Commercial/Business 35 2.7

Total 1327 100

5T A 459 A43, 2003



Choi, Kyung Sook

catchment. The area of each landuse within the
study area and the percentages of the total area
are shown in Table 1. For this study, 42
subcatchments were used with sizes varying
from 0.50 ha to 27.3 ha.

. Methodology
1. Alternative Inference Models

In the previous study, the inference models
were developed originally for selection of
spatially variable model control parameters
(overland flow length, impervious fraction,
depression storage and Manning's roughness of
impervious areas) within the Runoff Block in
SWMM. These are shown in Equations (1) ~ (5).

+ Subcatchment width and factor (X1)

A

W‘Z ...................................................... (1)
L

o=—
L/ ...................................................... (2)

Where W: Subcatchment width
A Subcatchment area
o ° Factor of overland flow length (con—
stant over all subcatchments)
L : Optimum overland flow length
Ly . Estimated overland flow length using
spatial database

* Impervious fraction (X2)

Where im . Fraction of impervious area of a
subcatchment
A Subcatchment area
AL ¢ Area of each land use within a
subcatchment
im: Fraction of impervious area of each
landuse

* Depression storage (X3)
dp= 3 2 xdp,

Where dp : Depression storage
A Impervious area of each sub-—
catchment
Au  Impervious area of each landuse
within a subcatchment
dp. . Depression storage of each landuse

« Manning's roughness (X4)

Where n : Manning's roughness coefficient
4; : Impervious area of each subcat—
chment
A * Impervious area of each landuse
within a subcatchment
n, : Manning's roughness coefficient of
each landuse

Based on these equations, alternative inference
models were developed. Each inference model
varied with spatially variable values for each
subcatchment or spatially fixed values for
catchment scale as shown in Table 2. Each model,
therefore, had a different complexity (i.e.
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Table 2 Various inference scenarios for calibration

parameters
Model No. of parameters to be calibrated Total
X1 X2 X3 X4
A 42 5 7 7 61
B F* 5 7 20
C 42 5 c* 7 55
D 42 5 7 c* 55
E F* 5 c* 7 14
F F* 5 7 c* 14
G 42 5 c* c* 49
H F* 5 c* c* 8
I 42 c* c* c* 45
J c* c* c* c* 4

cf) F* : Factor of X1 parameter over all subcatchments
C* : Constant value

different number of model parameters within the
inference models) and structure.

In Table 2, X1 is the overland flow length
parameter for each subcatchment while X2, X3,
and X4 are the impervious fraction, depression
storage and Manning's roughness parameters of
individual landuses respectively. The number of
X1 parameter is equal to therefore the number
of subcatchments, while the number of X2, X3
and X4 control parameters is equal to the number
of landuse types as these parameters are landuse
dependent variables.

For the Centennial Park catchment, 42
subcatchments were employed for this study and
there were 7 landuse types as discussed
previously. Hence, the number of parameters for
X1 should be 42, and the number of parameters
for X2, X3 and X4 should be 7 if the models do
not employ a factor or constant values for these
control parameters.

The control parameter, X2, however, has only
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5 parameters requiring calibration since the area
of road and street, and of open space for this
control parameter were excluded from the
calibration process with the parameter values for
these areas being fixed as 100 % and O % during
the calibration process.

The maximum number of parameters to be
considered is therefore 61 for model A, which
has the maximum spatial variability in control
parameter values. The minimum number of pa—
rameters is 4 for model J, which has the minimum
spatial variability in control parameter values.

Through implementation of these models, two
issues were investigated. These are:

» Influence of model complexity and structure
on the calibration process with different
objective functions.

Effect on modelling performance of employing
a factor or constant values over all sub—
catchments for calibration parameters such as
subcatchment overland flow length, depre—
ssion storage, and overland flow Manning's
roughness.

2. Objective Functions

Several objective functions were selected for
the calibration process to investigate the effects
of different objective functions associated with
different model complexity and structure on
evaluation of control parameter values. The
selected objective functions were Absolute
Relative Errors (ARE) of runoff volume and peak
flow, Sum of Square Error (SSE), Mean Square
Error (MSE), Root Mean Square Error (RMSE),
Mean Absolute Error (MAE) as shown in
Equations (6) ~ (11). These are common criteria
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for evaluation of the model performance in
catchment modelling. Each model (A to J) was
examined based on these six objective functions.

« Absolute Relative Error (ARE) of runoff
volume

where R, : is observed runoff volume (m®)
R : is simulated runoff volume (m®)

+ Absolute Relative Error (ARE) of peak flow

P, ~-F
ARE peos_gio = P, |, %)
where P, : is observed peak flow (m’/s)

P, : is simulated peak flow (m®/s)

+ Sum of Square Error (SSE)
SSE = z":(Qoi _Q:i )2

where Qi : is observed flow rate (m/s)
Q. © is simulated flow rate (m’/s)
n s number of observations in the
time series

« Mean Square Error (MSE)

1& 2
MSE =— =

n,z,( ) (9)
where Qs ' is observed flow rate (m%/s)

Qs © is simulated flow rate (m%s)

n . is number of observations in the

time series

* Root Mean Square Error (RMSE)

1& 2
RMSE = \};g(gm -Q") .............................. (10)

where Qu: is observed flow rate (m%s)
Q. is simulated flow rate (m%/s)
n ©is number of observations in the
time series

« Mean Absolute Error (MAE)

1 n
MAE—;%:

Qol - Q.ri

where Qu: is observed flow rate (m®/s)
Q. is simulated flow rate (m°/s)
n ' is number of observations in the
time series

3. Implementation of Various Inference Models

The calibration was performed by minimising
the summation of errors for individual events (le.
(28, where, e is an individual event) instead of
minimising the error of each calibration event
separately. Three events were selected for this

Table 3 Details of calibration events

. Runoff Peak
Events R(amfa;ll volume flow AMC
mm (m*) | (m's)

Nov, 04, 94 40 1886.1 0.849 Dry
Nov. 29, %4 40 12036 0.382 Dry
Jan, 28, 95 80 3074.7 0.896 Dry
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study. Table 3 shows the details of calibration
events selected.

After assessment of the simulations, the
models [ and J were excluded from further study
as these models produced unrealistic results
which could not be accepted. The reason for this
phenomenon is that inference models were
originally designed on the basis of land use
factor, but these models do not take account this
concept as they assume constant values for all
land use dependent variables including im-—
pervious fraction (X2), depression storage (X3),
and overland flow Manning's roughness (X4).
These models cannot therefore account for the
spatial variability of the catchment, which is
contrary to the principle of the inference models
developed using landuse factor. Consequently,
only eight models (A to H) were accepted for the
examination, and hence, a total of 48 alternatives
(ie. eight models with six objective functions)
were used for evaluation of the model per—
formances. The results of the study will be
discussed based on the initial estimates and the
final results of the calibration process.

IV. Results and Discussion

1. Evaluation Based on Initial Estimates

The details of the performance of the eight
models for six objective functions based on initial
estimates from the calibration data are shown in
Table 4.

As shown in this table, the function values of
models A and B in this table are equal through
the six objective functions because the struc—
tures of models A and B at the starting point
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Table 4 Function values at starting point

ARE | ARE | SSE | MSE |RMSE| MAE
runoff | peak | (m%/s)*| (m*/s)?| (m%/s) | (m/s)
A | 0053 0211} 0552 | 0.011 | 0.099 | 0.065
0.053 | 0211} 0552 | 0.011 | 0.099 | 0.065
0.098 | 0241 | 0630 | 0.013 | 0.107 | 0.069
0.035 10284 0505 [ 0.010 | 0.094 | 0.063
0.098 | 02411 0630 | 0013 | 0.107 | 0.069
0035 | 02841 0505 | 0010 | 0.094 | 0.063
0082 [ 0261 | 0573 | 0.011 | 0.100 | 0.064
0.082 10261 0573 | 0.011 | 0.100 | 0.064

Model

TIOmmio|o|w

are basically identical as shown in Table 2. The
only difference between these models is that
model B uses a factor for the subcatchment
overland flow length parameter, while the model
A does not. Since the initial value for this factor
is 1.0, the initial estimates of this parameter for
two models are the same, and hence, they
provided the same function values. The models
C and E, the models D and F, and the models G
and H have also the same structure with different
complexity as the case of the models A and B.

Once the optimisation process is commenced,
however, these models will have different
function values at each iteration point. In the case
of the same number of model parameters with
different structure such as the models C and D
(55 parameters), and the models E and F (14
parameters), different results were produced
respectively. These resuits indicate that model
structure influences modelling performance more
than model complexity does.

In general, the models D and F, having constant
value for the Manning's roughness parameter,
produced the lowest prediction error among the
eight models for the ARE in runoff volume, SSE,
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MSE, RMSE, and MAE objective functions from
the calibration, while the models C and E, having
constant value for the depression storage
parameter, showed the highest function values.
These results suggest that the initial constant
value for the depression storage parameter
within the models C and E needs to be adjusted
for most objective functions, and the initial
constant value of Manning's roughness para-—
meter within the models D and F appeared to be
reasonable.

For the peak flow objective function, on the
other hand, slightly different results were
obtained. As shown in Table 4, the models D and
F resulted in the highest prediction error for this
objective function while the models A and B
produced in better results compared to other
models. This implies that the initial constant
values of Manning's roughness parameter should
be modified to minimise prediction error of peak
flow.

From the above results, it was noted that the
control parameter values are very much de—
pendent on objective functions selected, and
model structure influences modelling perfor—
mance more than model complexity does.

Compared to objective function, however, both
factors do not seem to greatly influence mo—
delling performance for the given data set.

2. Evaluation Based on Ending Point

After the optimisation process, the results of
eight models were also evaluated at ending point
to investigate performances of these models. The
results are summarised in Table 5. Eight models
showed comparable performance through six

Table 5 Function values at ending point

AREﬂOf peak | S (mivs)?
oW

Model Ending | Function| Ending | Function| Ending | Function
point | value | point | value | point | value

A | 6954 | 0021 | 3721 | 0.180 | 6893 | 0.429
1260 | 0.021 | 900 | 0.052 | 3040 | 0436
2970 | 0.022 | 6050 | 0.058 | 7205 | 0419
4455 | 0021 | 6270 | 0.128 | 3410 | 0.426
2884 | 0021 | 1526 | 0.097 | 1834 | 0435

966 | 0,021 | 1064 | 0.103 | 826 | 0413
6811 | 0.023 | 7252 | 0.042 | 2352 | 0.429

928 | 0.022 { 664 [ 0068 | 360 | 0.514

ARE of runoff

oMM\

MSE (m*/s)? |RMSE (m%/s) | MAE (m%/s)

Model Ending|Function| Ending | Function| Ending | Function
point | value | point | value | point | value

A | 4575 | 0.009 | 5002 | 0.090 | 4636 | 0.059

500 | 0.010 | 1240 | 0.089 | 2660 | 0.055
5445 | 0.009 | 5940 | 0.085 | 7260 | 0.061
2530 | 0.009 | 9185 | 0.086 | 3850 | 0.058
1428 | 0.010 | 1946 | 0.089 | 1722 | 0.055
1946 | 0.008 | 1162 | 0.086 | 1484 | 0.058
4557 | 0.008 | 6958 | 0.081 | 6027 | 0.053

672 | 0.009 | 1320 | 0.082 | 376 | 0.062

T|OmE|oo | w

objective functions as all models converged to
the same location or nearby at ending point.
Similar phenomena to the case of initial estimates
were observed from the results.

From the comparison of the number of function
evaluations, generally, the simpler models such
as F and H showed slightly high efficiency among
eight models through six objective functions. The
more complex models (e.g. A, C, D and G)
converged more slowly because of having more
control parameters to be optimised. The complex
models therefore had less efficiency to reach the
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locations of minimum objective function values,
and did not necessarily produce dominant per—
formances. Due to this fact, Loague and Freeze
(1985), Hornberger et al. (1985), Beven (1989),
and Jakeman and Hornberger (1993) have
suggested employing simpler models for hyd—
rologic modelling in order to prevent over—
parameterisation problems when estimating
accurate parameter values with limited amount of
information.

In general, there were not huge differences
between the models using a factor or constant
values for estimating control parameter values
and the original inference models. Again, this
implies that model complexity or structure does
not greatly influence model performances. The
same observation was made by Gan et al. (1997).
For modelling purposes, however, the use of
constant values for depression storage and
Manning's roughness of impervious area para—
meters seems to be more effective than the
original inference model and the models em—
ploying a factor for subcatchment overland flow
length parameter, since the model G generally
performed slightly better overall across the 6
objective functions.

As shown in Table 5, a wider range of function
values over eight models was observed from the
peak flow objective function, while smaller
variations of the function values between eight
models were noticed from other objective
functions. This indicates that the peak flow
objective function is more sensitive to the model
complexity and structure compared to others.

From the 48 results, the runoff volume and
peak flow objective functions showed good
performance in terms of reducing prediction
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error in runoff volume and peak flow respec—
tively. The SSE objective function was not
effective at reducing peak flow error while the
RMSE objective function appeared to be better
for this purpose. Also, among all the objective
functions, the RMSE objective function per-—
formed best in improving shape of the simulated
hydrographs. From the above results, it was
suggested that the runoff volume and peak flow
objective functions are suitable for fitting volume
of hydrograph and peak flow, respectively, and
when spatial time series analysis is needed, the
RMSE objective function is recommended along
with other point error measures including SSE,
MSE, RMSE, and MAE.

V. Conclusions

Eight different alternative inference models
were designed by utilisation of the original
inference models developed in the previous
study. Using six objective functions, investi—
gation of the influence of model complexity and
structure on calibration process was performed.

Based on the results of this study, the following
points were concluded:

1) Model performance based on initial
estimates was influenced by model structure
more than mode! complexity, and hence sound
model structure is more important than high
degree of model complexity when limited
recorded information is available.

2) Compared to objective function, model
complexity and structure had httle influence on
calibration process for the given data set
although the function values at starting point
were shown to be more influenced by model
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structure than complexity.

3) Objective function was the most influential
factor for both the initial estimates and the final
results. The selection of objective functions
therefore should be made carefully depending on
the modelling purpose.

4) The use of constant values for depression
storage and Manning's roughness parameters
seems to be more effective than employing a
factor for the subcatchment overland flow length
parameter.

5) Peak flow objective function is more
sensitive to the model complexity and structure
than other objective functions selected.

6) ARE in runoff volume and peak flow and
RMSE objective functions are the recommended
objective functions for fitting runoff volume, peak
flow and shape of hydrograph respectively.

In conclusion, the model complexity seems to
influence the efficiency of the calibration process
while the model structure is likely affect
modelling performance. The contro! parameter
values are however more dependent on the
selection of objective functions than model
complexity or structure.
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