• Title/Summary/Keyword: a inference

Search Result 2,846, Processing Time 0.035 seconds

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.

An Information-based Forecasting Model for Project Progress and Completion Using Bayesian Inference

  • Yoo, Wi-Sung;Hadipriono, Fabian C.
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.4
    • /
    • pp.203-213
    • /
    • 2007
  • In the past, several construction projects have exceeded their schedule resulting in financial losses to the owners; at present there are very few methods available to accurately forecast the completion date of a project. These nay be because of unforeseen outcomes that cannot be accounted for earlier and because of deficiency of proper tools to forecast completion date of said project. To overcome these difficulties, project managers may need a tool to predict the completion date at the early stage of project development. Bayesian Inference introduced in this paper is one such tool that can be employed to forecast project progress at all construction stages. Using this inference, project managers can combine an initially planned project progress (growth curve) with reported information from ongoing projects during the development, and in addition, dynamically revise this initial plan and quantify the uncertainty of completion date. This study introduces a theoretical model and proposes a mathematically information-based framework to forecast a project completion date that corresponds with the actual progress data and to monitor the modified uncertainties using Bayesian Inference.

Representative Keyword Extraction from Few Documents through Fuzzy Inference (퍼지 추론을 이용한 소수 문서의 대표 키워드 추출)

  • 노순억;김병만;허남철
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.117-120
    • /
    • 2001
  • In this work, we propose a new method of extracting and weighting representative keywords(RKs) from a few documents that might interest a user. In order to extract RKs, we first extract candidate terms and then choose a number of terms called initial representative keywords (IRKS) from them through fuzzy inference. Then, by expanding and reweighting IRKS using term co-occurrence similarity, the final RKs are obtained. Performance of our approach is heavily influenced by effectiveness of selection method of IRKS so that we choose fuzzy inference because it is more effective in handling the uncertainty inherent in selecting representative keywords of documents. The problem addressed in this paper can be viewed as the one of calculating center of document vectors. So, to show the usefulness of our approach, we compare with two famous methods - Rocchio and Widrow-Hoff - on a number of documents collections. The results show that our approach outperforms the other approaches.

  • PDF

Multi-Sensor Data Fusion Model that Uses a B-Spline Fuzzy Inference System

  • Lee, K.S.;S.W. Shin;D.S. Ahn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.3-23
    • /
    • 2001
  • The main object of this work is the development of an intelligent multi-sensor integration and fusion model that uses fuzzy inference system. Sensor data from different types of sensors are integrated and fused together based on the confidence which is not typically used in traditional data fusion methods. The information is fed as input to a fuzzy inference system(FIS). The output of the FIS is weights that are assigned to the different sensor data reflecting the confidence En the sensor´s behavior and performance. We interpret a type of fuzzy inference system as an interpolator of B-spline hypersurfaces. B-spline basis functions of different orders are regarded as a class of membership functions. This paper presents a model that ...

  • PDF

Self-Organized Reinforcement Learning Using Fuzzy Inference for Stochastic Gradient Ascent Method

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.3-96
    • /
    • 2001
  • In this paper the self-organized and fuzzy inference used stochastic gradient ascent method is proposed. Fuzzy rule and fuzzy set increase as occasion demands autonomously according to the observation information. And two rules(or two fuzzy sets)becoming to be similar each other as progress of learning are unified. This unification causes the reduction of a number of parameters and learning time. Using fuzzy inference and making a rule with an appropriate state division, our proposed method makes it possible to construct a robust reinforcement learning system.

  • PDF

Statistical Inference for Peakedness Ordering Between Two Distributions

  • Oh, Myong-Sik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.05a
    • /
    • pp.109-114
    • /
    • 2003
  • The concept of dispersion is intrinsic to the theory and practice of statistics. A formulation of the concept of dispersion can be obtained by comparing the probability of intervals centered about a location parameter, which is peakedness ordering introduced first by Birnbaum (1948). We consider statistical inference concerning peakedness ordering between two arbitrary distributions. We propose nonparametric maximum likelihood estimator of two distributions under peakedness ordering and a likelihood ratio test for equality of dispersion in the sense of peakedness ordering.

  • PDF

INFERENCE FOR PEAKEDNESS ORDERING BETWEEN TWO DISTRIBUTIONS

  • Oh, Myong-Sik
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.3
    • /
    • pp.303-312
    • /
    • 2004
  • The concept of dispersion is intrinsic to the theory and practice of statistics. A formulation of the concept of dispersion can be obtained by comparing the probability of intervals centered about a location parameter. This is the peakedness ordering introduced first by Birnbaum (1948). We consider statistical inference concerning peakedness ordering between two arbitrary distributions. We propose non parametric maximum likelihood estimators of two distributions under peakedness ordering and a likelihood ratio test for equality of dispersion in the sense of peakedness ordering.

Nonlinear Inference Using Fuzzy Cluster (퍼지 클러스터를 이용한 비선형 추론)

  • Park, Keon-Jung;Lee, Dong-Yoon
    • Journal of Digital Convergence
    • /
    • v.14 no.1
    • /
    • pp.203-209
    • /
    • 2016
  • In this paper, we introduce a fuzzy inference systems for nonlinear inference using fuzzy cluster. Typically, the generation of fuzzy rules for nonlinear inference causes the problem that the number of fuzzy rules increases exponentially if the input vectors increase. To handle this problem, the fuzzy rules of fuzzy model are designed by dividing the input vector space in the scatter form using fuzzy clustering algorithm which expresses fuzzy cluster. From this method, complex nonlinear process can be modeled. The premise part of the fuzzy rules is determined by means of FCM clustering algorithm with fuzzy clusters. The consequence part of the fuzzy rules have four kinds of polynomial functions and the coefficient parameters of each rule are estimated by using the standard least-squares method. And we use the data widely used in nonlinear process for the performance and the nonlinear characteristics of the nonlinear process. Experimental results show that the non-linear inference is possible.

Fuzzy Inference-based Quantitative Estimation of Environmental Affecting Factor For Performance-based Durability Design of RC Structure Exposed to Salt Attack Environment (염해 환경에 노출된 RC 구조물의 내구성능설계를 위한 퍼지 추론 기반 환경영향지수의 산정)

  • Do Jeong Yun;Song Hun;Soh Seung Young;Soh Yang Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.237-240
    • /
    • 2005
  • As a part of the effort for improving the durability design based on a set of the deem-to-satisfy specifications, it is important and primary to quantitatively identify the environmental impact to a target reinforced concrete structure. In this work, an effort is made to quantitatively calculate the environmental affecting factor with using a fuzzy inference that it indicates the severity of environmental impact to the exposed reinforced concrete structure or member. This system is composed of input region, output region and rule base. For developing the fuzzy inference system surface chloride concentration{chloride), cyclic degree of wet and dry(CWD), relative humidity(RH) and temperature (TEMP) were selected as the input parameter to environmental affecting factor(EAF) of output parameter. The Rules in inference engine are generated from the engineering knowledge and intuition based on some international code of practises as well as various researcher's experimental data. The devised fuzzy inference system was verified comparing the inferred value with the investigation data, and proved to be validated. Thus it is anticipated that this system for quantifying EAF is certain to be considered into the starting point to develop the performance-based durability design considering the service life of structure.

  • PDF

A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture (적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구)

  • Oh, Sung-Kwun;Kim, Dong-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF