• 제목/요약/키워드: a fuzzy sliding mode control

검색결과 195건 처리시간 0.034초

The Design of Sliding Mode Controller with Perturbation Estimator Using Observer-Based Fuzzy Adaptive Network

  • Park, Min-Kyu;Lee, Min-Cheol;Go, Seok-Jo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.506-506
    • /
    • 2000
  • To improve control performance of a non-linear system, many other researches have used the sliding mode control algorithm. The sliding mode controller is known to be robust against nonlinear and unmodeled dynamic terms. However. this algorithm raises the inherent chattering caused by excessive switching inputs around the sliding surface. Therefore, in order to solve the chattering problem and improve control performance, this study has developed the sliding mode controller with a perturbation estimator using the observer-based fuzzy adaptive network generates the control input for compensating unmodeled dynamics terms and disturbance. And, the weighting parameters of the fuzzy adaptive network are updated on-line by adaptive law in order to force the estimation errors to converge to zero. Therefore, the combination of sliding mode control and fuzzy adaptive network gives rise to the robust and intelligent routine. For evaluating control performance of the proposed approach. tracking control simulation is carried out for the hydraulic motion simulator which is a 6-degree of freedom parallel manipulator.

  • PDF

슬라이딩 모드 관측기에 의한 최적의 공회전 제어기 설계 (Design of Optimal Idle Speed Controller by Sliding Mode Observer)

  • 이영춘;이성철
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.161-167
    • /
    • 2001
  • This paper presents an approach to nonlinear engine idle controller and intake manifold absolute pressure(MAP) observer based on mean torque production model. A stable engine idle speed is important in that the unstable engine Idle mode can make engine to drooping or stall state. A sliding fuzzy controller has been designed to control engine idle speed under load disturbance. A sliding observer is also developed to estimate the intake manifold absolute pressure and compared with the actual MAP sensor value. The sliding mode observer has shown good robustness and good tracking performance. The inputs of sliding fuzzy controller are the errors of rpm and MAP. The output is a duty cycle(DC) for driving a idle speed control valve(ISCV).

  • PDF

퍼지 이론과 슬라이딩모드 제어를 이용한 스위치드 릴럭턴스 전동기의 토크리플 저감 (Torque Ripple Minimization for Switched Reluctance Motors Using a Fuzzy Logic and Sliding Mode Control)

  • 윤재승;김동희;신혜웅;이교범
    • 전기학회논문지
    • /
    • 제63권10호
    • /
    • pp.1384-1392
    • /
    • 2014
  • This paper presents a torque ripple reduction algorithm for the switched reluctance motor drives using the fuzzy logic and the sliding mode control. A turn-on angle controller based on the fuzzy logic determines the optimal turn-on angle. In addition, a sliding mode torque control (SMTC) methods reduces torque ripples instantaneously in the commutation region. The proposed algorithm does not require complex system models considering nonlinear magnetizing or demagnetizing periods of the phase current. According to the rotor speed and torque, the proposed controller changes the turn-on angle and reference torque instantaneously until the torque ripples are minimized. The simulation and experimental results verify the validity of minimizing the torque ripple performance.

Robust Sliding Mode Friction Control with Adaptive Friction Observer and Recurrent Fuzzy Neural Network

  • Shin, Kyoo-Jae;Han, Seong-I.
    • Journal of information and communication convergence engineering
    • /
    • 제7권2호
    • /
    • pp.125-130
    • /
    • 2009
  • A robust friction compensation scheme is proposed in this paper. The recurrent fuzzy neural network and friction parameter observer are developed with sliding mode based controller in order to obtain precise position tracking performance. For a servo system with incomplete identified friction parameters, a proposed control scheme provides a satisfactory result via some experiment.

T-S 퍼지 모델을 이용한 비선형 시스템의 퍼지 슬라이딩 모드 제어 (Fuzzy Sliding Mode Control of Nonlinear System Based on T-S Fuzzy Dynamic Model)

  • 유병국;양근호
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.112-117
    • /
    • 2004
  • 본 논문에서는 Takagi-Sugeno(T-S) 퍼지 시스템 모델을 이용한 비선형 시스템의 퍼지 슬라이딩 모드제어방식을 제안한다. 이 방식에서는 하나의 T-S 퍼지 모델을 구성하는 각 선형 동력학의 입력 이득행렬을 단일화 하는 과정을 필요로 한다. 이 과정에서 생성되는 입력 불확실성은 슬라이딩 모드 제어의 외란에 대한 처리 방법으로 해결될 수 있다. 또한 기존의 T-S 퍼지 모델에 대한 제어방식에서 처리하지 못했던, 상태변수에 독립적이기 때문에 선형화되지 않는 비선형 항에 대한 문제를 해결할 수 있다. 제안된 제어시스템의 안정도를 보이며 제어 입력이 슬라이딩 평면에 대한 도달조건을 만족함을 보인다. 제안된 제어방식의 타당성과 제어기 설계과정을 보이기 위하여 역진자 시스템에 적용한 시뮬레이션 결과를 보인다.

퍼지 슬라이딩 모드 제어기를 이용한 양측식 가동 자석형 LDM의 위치 제어 (Position Control of a Double-Sided MM Type LDM Using Fuzzy Sliding Mode Control)

  • 김진우;김영태;이동욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.784-786
    • /
    • 1995
  • Variable Structure Control(VSC) scheme with sliding mode is widely used to keep a control system insensitive to parameter variations and disturbances. However, the conventional sliding mode control has the undesired phenomenon of chattering which may become a serious problem. Also the restriction of the sliding mode regime cannot guarantee the insensitivity throughout an entire response. In this paper, the sliding surfaces, which are composed of three-line segments, are used to remove the reaching phase. Also, the concept of fuzzy logic is incorporated with the sliding mode control in order to control the unknown or partially known systems effectively. The proposed method is applied to a Double-Sided MM Type LDM to show its usefulness.

  • PDF

2차 슬라이딩 모드를 이용한 불확실성을 갖는 비선형 시스템의 간접적응 자기조정 퍼지제어 (Indirect Adaptive Self-Regulating Fuzzy Control of Uncertain Nonlinear Systems Using Second Order Sliding Mode)

  • 박원성;양해원;정기철;김도우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1716-1717
    • /
    • 2007
  • In this paper, a second order fuzzy sliding mode control that combines with a adaptive self-regulating technique is proposed for a nonlinear system with unknown dynamics. The chattering effect that is a representative disadvantage of the sliding mode control is avoided by using the second order sliding mode control instead of the first order sliding mode control. The proposed sub-controller is composed of the equivalent control that is approximated by an online rule regulation sheme and the hitting control that is used to constrain the states of the sub-system to maintain on the sub-sliding surface and used to guarantee the system robustness. Simulation results are presented to show the effectiveness of the proposed controller

  • PDF

2차슬라이딩모드를 이용한 불확실성을 갖는 비선형시스템의 간접적응 퍼지제어 (Indirect Adaptive Fuzzy Control of Uncertain Nonlinear Systems Using Second Order Sliding Mode)

  • 박원성;황영호;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.468-471
    • /
    • 2003
  • In this paper, a second order sliding mode control that combines with a fuzzy adaptation technique is presented for a nonlinear system with unknown dynamics. The chattering effect that is a representative disadvantage of the sliding mode control is avoided by using the second order sliding mode control instead of the first order sliding mode control. The proposed controller is composed of the equivalent control that is approximated by an online adaptation scheme and the hitting control that is used to constrain the states to maintain on the sub-sliding surface and used to guarantee the system robustness. Simulation results are presented to show the effectiveness of the proposed controller.

  • PDF

Fuzzy Logic Based Sliding Mode Control

  • Kim, Sung-Woo;Lee, Ju-Jang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.822-825
    • /
    • 1993
  • A fuzzy logic controller derived from the variable structure control (VSC) theory is designed. Unlike the conventional design of the fuzzy controller, we do not fuzzify the error and the rate of error, but fuzzify the sliding surface. After the fuzzy sliding surface is introduced, the fuzzy rules are defined based on the sliding control theory. It will be shown this sliding mode fuzzy controller is a kind of VSC that introduces the boundary layer in the switching surface and that the control input is continuously approximated in the layer. As a result we can guarantee the stability and the robustness by the help of VSC, which were difficult to insure in the past fuzzy controllers. Simulation results for the inverted pendulum will show the validity.

  • PDF

퍼지 슬라이딩 제어기를 이용한 도립진자 제어 (Control of Inverted Pendulum using Fuzzy Sliding Mode Controller)

  • 송영목;정병호;유창완;윤석열;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2759-2761
    • /
    • 2001
  • Sliding mode is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances. But there ane problems in sliding mode controller. Hard in modeling system parameters, chattering, etc. In this paper, new sliding controller design method is proposed for solving the above problems using fuzzy sliding mode contros(FSMC) scheme are considered. we propose that fuzzy logic system are used to approximate unknown system functions in desinging the SMC of Inverted Pendulum. In the method, a fuzzy logic system is utilized to approximate the unknown function f of the nonlinear system. As a simulation result of applying the inverted pendulum, the sliding controller shows good robust characteristics.

  • PDF