• Title/Summary/Keyword: a force feedback

Search Result 501, Processing Time 0.029 seconds

A Conceptual Design of an Integrated Tactile Display Device

  • Son, Seung-Woo;Kyung, Ki-Uk;Yang, Gi-Hun;Kwon, Dong-Soo;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2753-2758
    • /
    • 2003
  • Tactile sensation is essential for many manipulation and exploration tasks not only in a real environment but also in a virtual environment. In this paper, we discuss a conceptual design of an integrated tactile display system. The system comprises two parts: a 2 DOF force feedback device for kinesthetic display and a tactile feedback device for displaying the normal stimulation to skin and the skin slip/stretch. Psychophysical experiments measure the effects of fingerpad selection, the direction of finger movements and the texture width on tactile sensitivity. We also investigate characteristics of lateral finger movement while subjects perceive different textures. From the experimental results, the principal parameters for designing a tactile display are suggested. A tactile display device is implemented using eight piezoelectric bimorphs and a linear actuator, and is attached to a 2 DOF translational force feedback device to simultaneously simulate texture and stiffness of the object.

  • PDF

Measurement of postural instability before and after experiencing a VR system by using a force platform (힘판을 이용한 가상현실 체험 전후 신체동요의 측정)

  • 박재희;김영윤;김은남;김현택;고희동
    • Science of Emotion and Sensibility
    • /
    • v.5 no.4
    • /
    • pp.45-49
    • /
    • 2002
  • Recently, virtual environment systems are used in various application fields such as industry, medicine, and training and education. However, the negative effect, cybersickness including nausea, visual fatigue, and disorientation, could be happened while using VR systems. It prevents VR system from spreading much more. To control the cybersickness, first of all, the objective measurement method should be established. As one of alternative methods, the postural instability could be a measure of cybersickness. In this study, 45 participants' postural sway before and after experiencing a H driving simulator was measured by using a force platform. Especially, we examined if two factors, motion and feedback, could affect on the postural instability The results showed the postural instability slightly increased after experiencing the VR driving simulator. For the factors, the providing of motion synchronized to visual display showed statistical significant decrease in postural sway along lateral side. To check the effectiveness of postural instability as a cybersickness measure, further studies are needed.

  • PDF

Force control of a structurally flexible robotic manipulator

  • 최병오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.369-373
    • /
    • 1992
  • Force control of a planar two-link structurally flexible robotic manipulator is considered in this study. The dynamic model is obtained by using the extended Hamilton's principle and the Galerkin criterion. A method is pressented toobtain the linearized equations of motion in Cartesian space for use in designing the control system. The approachto solving the control problem is to use feedforward and feedback control torques. The feedforward torques maneuver the flexible manipulatro along a nominal trajectory and the feedback torques minimize any deviations from the nominal trajectory. The linear quadratic Gaussian/loop transfer recovery (LQG/LTR) design methodology is explotied to design a robust feedback control system that can handle modeling errors and sensor noise, and operates on Cartesian space trajectory errors. The Lqg/LTR compenstaor together with a feedforward ollp is used to control the flexible manipulator. Simulated results are presented for a numerical example.

Yin Yan Approach to Systems Thinking (음양론에 입각한 시스템 사고의 접근)

  • Kim, Dong-Hwan
    • Korean System Dynamics Review
    • /
    • v.10 no.1
    • /
    • pp.97-107
    • /
    • 2009
  • In this paper, a structural similarity between traditional oriental philosophy and systems thinking is discussed. The polarity of causal relationship and feedback loops can be interpreted in terms of yin and yang of oriental philosophy. A positive feedback loop which is linked to the yang is a force or mechanism that accelerates changes in systems. A negative feedback loop which is linked to the yin can be interpreted as a force oppressing any changes. In this sense, systems thinking can be related to the oriental philosophy. With this linking pin between them, systems thinking can be introduced and educated more friendly in oriental society. Furthermore, systems thinking can get a set of rich insights from the oriental philosophy. This paper suggests a linking leverage between systems thinking and oriental philosophy.

  • PDF

Teleoperator Control Systems with Short Time Delay (시간 지연을 포함한 원격제어 시스템)

  • 장진규;한명철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.721-724
    • /
    • 2000
  • This paper has been demonstrated to be essential to successful telemanipulator control when the communication delay between master arms in the operator control station and telemanipulators in the remote site. This paper includes the human dynamics to generate a control command, the monitoring force feedback in order to robust under short time delays and the controller not to requre the derivative of interaction forces. Simulation results suggest that, the proposed control system should be superior to conventional systems in terms of performance and robustness under short time delays.

  • PDF

Force Control of Electro-Hydraulic Servo System using Direct Drive Valve for Pressure Control (압력제어용 직동 밸브를 이용한 전기.유압 서보시스템의 힘 제어)

  • Lee C.D.;Lee J.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.3
    • /
    • pp.14-19
    • /
    • 2004
  • The Direct Drive Valve used in this study contains a pressure-feedback-loop in itself, then it can eliminate nonlinearity such as the square-root-term in flow rate calculation and the change of bulk modulus of hydraulic oil. In this study, assuming that the dynamic characteristic of the DDV is modelled as a first order lag system, an parameter identification method using the input data and the output data is applied to obtain DDV's mathematical model. Then, a state feedback controller was designed to implement the force control of hydraulic system, and the control performance was evaluated.

  • PDF

Seismic test of modal control with direct output feedback for building structures

  • Lu, Lyan-Ywan
    • Structural Engineering and Mechanics
    • /
    • v.12 no.6
    • /
    • pp.633-656
    • /
    • 2001
  • In this paper, modal control with direct output feedback is formulated in a systematic manner for easy implementation. Its application to the seismic protection of structural systems is verified by a shaking table test, which involves a full-scale building model and an active bracing system as the control device. Two modal control cases, namely, one full-state feedback and one direct output feedback control were tested and compared. The experimental result shows that in mitigating the seismic response of building structures, modal control with direct output feedback can be as effective and efficient as that with full-state feedback control. For practical concerns, the control performance of the proposed method in the presence of sensor noise and stiffness modeling error was also investigated. The numerical result shows that although the control force may be increased, the maximum floor displacements of the controlled structure are very insensitive to sensor noise and modeling error.

Design of the Feedback linearizing Nonlinear Control with Uncertain Parameter. (미지의 파라메터를 가진 비선형 시스템의 궤환 선형화 제어기개발.)

  • Joo, Sung-Jun;Seo, Jin-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1134-1136
    • /
    • 1996
  • A necessary and suficient conditions is proposed for feedback linearizable SISO systems with unknown constant parameters. It is shown that the systems which satisfy the proposed conditions can be transformed into a controllable linear system with unknown parameter and it can be stabilized using the nonlinear feedback linearizing controller. We also present the analysis and implementation of a nonlinear feedback linearizing control for an Electro-Magnetic Suspension (EMS) system. We show that an EMS system is nonlinear feedback linearizable and satisfies the proposed conditions, and hence that the proposed nonlinear feedback controller for an EMS system is robust against mass parameter perturbation and force disturbance.

  • PDF

A Study on the Cutter Runout In-Process Compensation Using Repetitive Loaming Control (반복학습제어를 이용한 커터 런아웃 보상에 관한 연구)

  • Hwang, Joon;Chung, Eui-Sik;Hwang, Duk-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.137-143
    • /
    • 2002
  • This paper presents the In-process compensation to control cutter runout and improve the machined surface quality. Cutter runout compensation system consists of the micro-positioning servo system with piezoelectric actuator which is embeded in the sliding table to manipulate radial depth of cut in real-time. Cutting force feedback control was proposed in the angle domain based upon repetitive learning control strategy to eliminate chip load variation in end milling process. Micro-positioning control due to adaptive actuation force response improves the machined surface quality by compensation runout effect induced cutting force variation. This result will provide lots of information to build-up the preciswion machining technology.

A Study on the Fuzzy Learning Control for Force Control of Robot Manipulators (로봇 매니퓰레이터의 힘제어를 위한 퍼지 학습제어에 관한 연구)

  • 황용연
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.5
    • /
    • pp.581-588
    • /
    • 2002
  • A fuzzy learning control algorithm is proposed in this paper. In this method, two fuzzy controllers are used as a feedback and a feedforward type. The fuzzy feedback controller can be designed using simple knowledge for the controlled system. On the other hand, the fuzzy feedforward controller has a self-organizing mechanism and therefore, it does not need any knowledge in advance. The effectiveness of the proposed algorithm is demonstrated by experiment on the position and force control problem of a parallelogram type robot manipulator with two degrees of freedom. It is shown that the rapid learning and the robustness can be achieved by adopting the proposed method.