• 제목/요약/키워드: a current sensor

Search Result 2,203, Processing Time 0.026 seconds

Improved Linearity and Saturation of Current Sensor by Laminating Silicon Steel and Fermalloy (퍼멀로이와 실리콘스틸의 적층 통한 전류센서의 선형성 및 포화도 개선)

  • Shin, Jung-Won;Choi, Bong-Seok;Ha, Yeong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.194-201
    • /
    • 2015
  • The current sensor is used in industrial devices and power utilities. Core materials of these current sensors are divided into mainly two groups as silicon steel and fermalloy. Silicon steel has a wide saturation bandwidth but low sensitivity during low-current, whereas permalloy has a short saturation bandwidth but high sensitivity during low-current. In this paper, laminated silicon steel and permalloy by equal ratio is proposed to improve the linearity and saturation of current sensor. It is proved that the proposed core material has larger bandwidth than fermalloy as well as higher sensitivity than silicon steel. When comparing simulation results by FLUX 3D, the proposed method has also better performance than the previous core materials.

A New Magnatic Modulation for Improving Sensitivity of DC Current Sensor (DC 전류검출기의 감도 개선을 위한 새로운 자기변조)

  • Kim, Han-Sung;Lee, Hwan
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.268-277
    • /
    • 1994
  • Current sensor using Hall device is an instrument of detecting a current by Hall effect. The existing current sensor is ordinarily worked by concentrating electromagnetism produced around the conducting wire turned iron core. The tiny curren, however, could not be accurately detected by the instrument owing to influence of residual magnetism exisisting in iron core, and the result of detecting is also somewhat on the large side. kAccordingly, We fabricated a new type of instrument minimizing the influence of residual magnetism existing in iron core and detected the tiny DC current accurately by taking advantage of magnetic modulation. The range of measuring DC current is 0[mA]-100[mA] and the maxiumm Linerity tolleance by the result of detecting current, can be reduced less than 3 percent.

  • PDF

Design of a Built-In Current Sensor for IDDQ Testing (IDDQ 테스팅을 위한 내장형 전류 감지 회로 설계)

  • Kim, Jeong-Beom;Hong, Sung-Je;Kim, Jong
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.8
    • /
    • pp.49-63
    • /
    • 1997
  • This paper presents a current sensor that detects defects in CMOS integrated circuits using the current testing technique. The current sensor is built in a CMOS integrated circuit to test an abnormal current. The proposed circuit has a very small impact on the performance of the circuit under test during the normal mode. In the testing mode, the proposed circuit detects the abnormal current caused by permanent manufacturing defects and determines whether the circuit under test is defect-free or not. The proposed current sensor is simple and requires no external voltage and current sources. Hence, the circuit has less area and performance degradation, and is more efficient than any previous works. The validity and effectiveness are verified through the HSPICE simulation on circuits with defects.

  • PDF

A pin type current probe using Planar Hall Resistance magnetic sensor (PHR 자기센서를 적용한 탐침형 전류 프로브)

  • Lee, Dae-Sung;Lee, Nam-Young;Hong, Sung-Min;Kim, CheolGi
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.342-348
    • /
    • 2021
  • For the characterization or failure analysis of electronic devices such as PCB (printed circuit boards), the most common method is the measurement of voltage waveforms with an oscilloscope. However, because there are many types of problems that cannot be detected by voltage waveform analysis, several other methods such as X-ray transmission, infrared imaging, or eddy current measurement have been applied for these analyses. However, these methods have also been limited to general analyses because they are partially useful in detecting physical defects, such as disconnections or short circuits. Fundamentally current waveform measurements during the operation of electronic devices need to be performed, however, commercially available current sensors have not yet been developed, particularly for applications in highly integrated PCB products with sub-millimeter fine pitch. In this study, we developed a highly sensitive PHR (planar hall resistance) magnetic sensor for application in highly integrated PCBs. The developed magnetic sensor exhibited sufficient features of an ultra-small size of less than 340 ㎛, magnetic field resolution of 10 nT, and current resolution of 1 mA, which can be applicable for PCB analyses. In this work, we introduce the development process of the magnetic sensing probe and its characteristic results in detail, and aim to extend this pin-type current probe to applications such as current distribution imaging of PCBs.

A Novel Bridgeless Interleaved Power Factor Correction Circuit with Single Current Sensor (단일 전류 센서를 이용하는 새로운 브리지 없는 인터리빙 방식의 역률 보상 회로)

  • Doan, Van-Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.363-364
    • /
    • 2016
  • In this paper, a novel bridgeless interleaved power factor correction circuit with single current sensor is proposed. The proposed control strategy requires only one current sensor for the interleaved bridgeless PFC. By sampling the output current, all the boost indictor currents can be calculated and used to control the input current according to the input voltage. The reduced number of current sensors and associated feedback circuits helps reduce the cost of system. The problem caused by the unequal current gain between current sensors inherently does not exist in the proposed topology. Thus, current sharing between converters can be achieved more accurately and the high frequency distortion is decreased. In addition, the proposed technique can be applied to the other kinds of interleaved PFC topologies. Performance of the proposed control strategy is verified by the experimental results with 6.6kW bridgeless interleaved PFC circuit.

  • PDF

Implantation of DC Optical Current Sensor Based on Faraday Effect for HVDC (페러데이 효과를 이용한 특고압 직류전송용 광전류 센서 구현)

  • Kim, Kwang Taek;Chung, Dae Won;Kim, Young Soo
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.187-190
    • /
    • 2019
  • We proposed and demonstrated DC(direct current) optical current sensor based on Faraday effect for HVDC(high voltage direct current). The RIG((Bi1.3Gd0.43Y1.27)Fe5O12) was adopted as Faraday device because of its high Verdet constant and good thermal stability. The differential amplification scheme for signal processing was present. The sensor showed high linear response for the input current. Measurement range of the sensor was 0~200A and measurement error was less than 1%.

A study on Stress Corrosion Cracking of Sensor Wire in Thermally Insulated Underground Pipeline (이중보온관 부식감지선의 응력부식파괴에 관한 연구)

  • Choe, Yun-Je;Kim, Jeong-Gu
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.103-111
    • /
    • 2002
  • The thermally insulated underground pipelines have been used for district heating system. The sensor wire embedded in the insulation was used for monitoring the insulating resistance between the sensor wire and the pipe. The resistance measurement system detects corrosion of steel pipe under insulation. The corrosion and stress corrosion cracking(SCC) characteristics of sensor wire in synthetic ground water were investigated using the electrochemical methods and constant load SCC tests. The polarization tests were used to study the electrochemical behavior of sensor wire. The sensor wire was passivated at temperatures ranging from 25 to $95^{\circ}C$. However, the applied sensing current larger than passive current resulted in breakdown of passive film. The constant load SCC tests were performed to investigate the effects of applied current and load on the fracture behavior. Stress-corrosion cracks initiated at pits that were produced by sensing current. The growth of the pit involves a tunnelling mechanism, which leads to ductile fracture.

Wide Dynamic Range CMOS Image Sensor with Adjustable Sensitivity Using Cascode MOSFET and Inverter

  • Seong, Donghyun;Choi, Byoung-Soo;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.160-164
    • /
    • 2018
  • In this paper, a wide dynamic range complementary metal-oxide-semiconductor (CMOS) image sensor with the adjustable sensitivity by using cascode metal-oxide-semiconductor field-effect transistor (MOSFET) and inverter is proposed. The characteristics of the CMOS image sensor were analyzed through experimental results. The proposed active pixel sensor consists of eight transistors operated under various light intensity conditions. The cascode MOSFET is operated as the constant current source. The current generated from the cascode MOSFET varies with the light intensity. The proposed CMOS image sensor has wide dynamic range under the high illumination owing to logarithmic response to the light intensity. In the proposed active pixel sensor, a CMOS inverter is added. The role of the CMOS inverter is to determine either the conventional mode or the wide dynamic range mode. The cascode MOSFET let the current flow the current if the CMOS inverter is turned on. The number of pixels is $140(H){\times}180(V)$ and the CMOS image sensor architecture is composed of a pixel array, multiplexer (MUX), shift registers, and biasing circuits. The sensor was fabricated using $0.35{\mu}m$ 2-poly 4-metal CMOS standard process.

Remote Measurement of a Distant Temperature and Current using Fiber Bragg Grating Sensors and Erbium-doped Fiber Ring Laser (어븀 첨가 광섬유형 링 레이저와 광섬유 격자 기반 센서를 이용한 원거리의 온도 및 전류 측정)

  • Sohn, Kyung-Rak;Shim, June-Hwan;Yang, Gyu-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1257-1262
    • /
    • 2008
  • A long-distance remote sensing of temperature and current based on a fiber Bragg grating (FBG) is proposed and demonstrated. The thermal expanding effect of the epoxy and the Er-doped fiber ring laser (EFRL) are applied to the sensor system to enhance the temperature and current sensitivity. An EFRL with a 5 km-single-mode fiber and a FBG shows a high extinction ratio of more than 60 dB and a low power fluctuation of less than 1 dB. The metal wires are used to supply the current to the sensors. When the NOA65 puts on the FBG as a thermal expanding material, the temperature and current sensitivity of the lasing wavelength shift are about $30\;pm/^{\circ}C$ and 3pm/mA, respectively. The proposed sensing scheme is useful for measurement of current or temperature at a distant object of more than several km.

Implementation of Low Noise Current Sensor using Low Pass FIR Filter (저역통과 FIR필터를 이용한 저잡음 전류 센서 구현)

  • Kim, Jeong-Hwan;Lee, Seong-Jin;Choi, Yong-geon;Han, Seong-Gye;Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.499-502
    • /
    • 2017
  • The needs of efficient electricity use and current measurement for electrical safety have been increased. Hence, the current sensor is used, especially non-contact current sensor which can measure the current without blocking the circuit using hall effect. However, the accurate measuring of the current sensor is inhibited due to the inflow of various noises in this current sensor. In this article, a stronger current sensor against the noise is proposed using low pass FIR filter to the existing current sensor. FIR filter was designed to block the range over the certain frequency at the output of the current sensor to eliminate the external noises, and so on. As a result, more accurate and close measurements were possible.

  • PDF