• Title/Summary/Keyword: a accelerometer

Search Result 1,044, Processing Time 0.029 seconds

Effects of Accelerometer Signal Processing Errors on Inertial Navigation Systems (가속도계 신호 처리 오차의 관성항법장치 영향 분석)

  • Sung, Chang-Ky;Lee, Tae-Gyoo;Lee, Jung-Shin;Park, Jai-Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.71-80
    • /
    • 2006
  • Strapdown Inertial navigation systems consist of an inertial sensor assembly(ISA), electronic modules to process sensor data, and a navigation computer to calculate attitude, velocity and position. In the ISA, most gryoscopes such as RLGs and FOGs, have digital output, but typical accelerometers use current as an analog output. For a high precision inertial navigation system, sufficient stability and resolution of the accelerometer board converting the analog accelerometer output into digital data needs to be guaranteed. To achieve this precision, the asymmetric error and A/D reset scale error of the accelerometer board must be properly compensated. If the relation between the acceleration error and the errors of boards are exactly known, the compensation and estimation techniques for the errors may be well developed. However, the A/D Reset scale error consists of a pulse-train type term with a period inversely proportional to an input acceleration additional to a proportional term, which makes it difficult to estimate. In this paper, the effects on the acceleration output for auto-pilot situations and the effects of A/D reset scale errors during horizontal alignment are qualitatively analyzed. The result can be applied to the development of the real-time compensation technique for A/D reset scale error and the derivation of the design parameters for accelerometer board.

Applying Hilbert-Huang Transform to Extract Essential Patterns from Hand Accelerometer Data (힐버트-황 변환에 통한 Hand Accelerometer 데이터의 핵심 패턴 추출)

  • Choe, Byeongseog;Suh, Jung-Yul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.179-190
    • /
    • 2017
  • Hand Accelerometers are widely used to detect human motion patterns in real-time. It is essential to reliably identify which type of activity is performed by human subjects. This rests on having accurate template of each activity. Many human activities are represented as a set of multiple time-series data from such sensors, which are mostly non-stationary and non-linear in nature. This requires a method which can effectively extract patterns from non-stationary and non-linear data. To achieve such a goal, we propose the method to apply Hilbert-Huang Transform which is known to be an effective way of extracting non-stationary and non-linear components from time-series data. It is applied on samples of accelerometer data to determine its effectiveness.

A Sit-Up Measuring Web Application for Tizen Smart-Watch (타이젠 스마트워치의 Accelerometer 센서를 이용한 윗몸 일으키기 측정 웹 어플리케이션의 성능개선)

  • Ko, You-Rim;Kim, Jun-Soo;Moon, Bong-Kyo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.162-165
    • /
    • 2016
  • This paper introduces a Tizen wearable device web application that measures the user's sit ups. The application measures the sit ups of the user through the device's accelerometer data. We created the application using an algorithm by kinetic data that we have developed for the application by analyzing the accelerometer data when doing the right sit ups, and have improved the accuracy of the sit up measurements compared to the existing applications by 9.25%.

Fuzzy rule-based Hand Motion Estimation for A 6 Dimensional Spatial Tracker

  • Lee, Sang-Hoon;Kim, Hyun-Seok;Suh, Il-Hong;Park, Myung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.82-86
    • /
    • 2004
  • A fuzzy rule-based hand-motion estimation algorithm is proposed for a 6 dimensional spatial tracker in which low cost accelerometers and gyros are employed. To be specific, beginning and stopping of hand motions needs to be accurately detected to initiate and terminate integration process to get position and pose of the hand from accelerometer and gyro signals, since errors due to noise and/or hand-shaking motions accumulated by integration processes. Fuzzy rules of yes or no of hand-motion-detection are here proposed for rules of accelerometer signals, and sum of derivatives of accelerometer and gyro signals. Several experimental results and shown to validate our proposed algorithms.

  • PDF

Resonant Loop Design and Performance Test for a Torsional MEMS Accelerometer with Differential Pickoff

  • Sung, Sang-Kyung;Hyun, Chul;Lee, Jang-Gyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2007
  • This paper presents an INS(Inertial Navigation System) grade, surface micro-machined differential resonant accelerometer(DRXL) manufactured by an epitaxially grown thick poly silicon process. The proposed DRXL system generates a differential digital output upon an applied acceleration, in which frequency transition is measured due to gap dependent electrical stiffness change. To facilitate the resonance dynamics of the electromechanical system, the micromachined DRXL device is packaged by using the wafer level vacuum sealing process. To test the DRXL performance, a nonlinear self-oscillation loop is designed based on the extended describing function technique. The oscillation loop is implemented using discrete electronic elements including precision charge amplifier and hard feedback nonlinearity. The performance test of the DRXL system shows that the sensitivity of the accelerometer is 24 Hz/g and its long term bias stability is about 2 mg($1{\sigma}$) with dynamic range of ${\sigma}70g$.

Extended Kalman Filter Based GF-INS Angular Velocity Estimation Algorithm

  • Kim, Heyone;Lee, Junhak;Oh, Sang Heon;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.3
    • /
    • pp.107-117
    • /
    • 2019
  • When a vehicle moves with a high rotation rate, it is not easy to measure the angular velocity using an off-the-shelf gyroscope. If the angular velocity is estimated using the extended Kalman filter in the gyro-free inertial navigation system, the effect of the accelerometer error and initial angular velocity error can be reduced. In this paper, in order to improve the navigation performance of the gyro-free inertial navigation system, an angular velocity estimation method is proposed based on an extended Kalman filter with an accelerometer random bias error model. In order to show the validity of the proposed estimation method, angular velocities and navigation outputs of a vehicle with 3 rev/s rotation rate are estimated. The results are compared with estimates by other methods such as the integration and an extended Kalman filter without an accelerometer random bias error model. The proposed method gives better estimation results than other methods.

Walking Measures with a Tri-axial Accelerometer in Stroke Patients (가속도계를 이용한 뇌졸중 환자의 보행 측정)

  • Oh, Yong-Seop;Woo, Young-Keun
    • PNF and Movement
    • /
    • v.11 no.2
    • /
    • pp.31-40
    • /
    • 2013
  • Purpose : The purpose of this study was to measure the center of mass in body with stroke patients using a tri-axial accelerometer during walking. Methods : Twenty-eight patients were recruited and divided into two groups for this study. To measure their walking ability, Timed Up & Go (TUG) test and Fucntioanl Gait Assessment (FGA) were conducted and acceleration at rotation of center of mass (COM) in body were measure for each group. Results : In the comparisons between the two groups, the TUG and FGA were not significant differences and acceleration at rotation of COM was not significant differences also. Conclusion : Our research results suggesting that the accelerometer may be used as a testing tool and ongoing assessment tool for stroke patients during effects of intervention in walking.

Oscillation Amplitude-controlled Resonant Accelerometer Design using Aautomatic Gain Control Loop (자동이득 제어루프를 이용한 진폭제어방식의 공진형 가속도계 설계)

  • Yun, Suk-Chang;Sung, Sang-Kyung;Lee, Young-Jae;Kang, Tae-Sam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.674-679
    • /
    • 2008
  • In this paper, we introduce a new design approach for self-sustained resonant accelerometer, that takes advantage of the automatic gain control (AGC) loop to achieve a stabilized oscillation dynamics. Fundamental idea of this accelerometer is to maintain uniform amplitude of oscillation under input accelerations. Through system modeling and loop transformation considering the envelope of oscillation, the controller is designed to maintain uniform amplitude in oscillation under dynamic input acceleration. The simulation results demonstrate the feasibility of the proposed accelerometer design, which is applicable to control grade inertial measurement system in industrial and civil application fields.

ON-LINE DYNAMIC SENSING OF SHIP'S ATTITUDE BY USE OF A SERVO-TYPE ACCELEROMETER AND INCLINOMETERS

  • Tanaka, Shogo;Nishifuji, Seiji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.162-165
    • /
    • 1995
  • For an accurate on-line measurement of the ship's attitude the paper develops an intelligent sensing system which uses one servo-type accelerometer and two servo-type inclinometers appropriately located on the ship. By considering the dynamics of the servo-controlled rigid pendulums of the inclinometers, linear equations for the rolling and pitching of the ship are derived separately from each other. Moreover, one accelerometer is used for extracting the heaving signal. Through the introduction of linear dynamic models and the linear observation equations for the heaving, rolling and pitching, the on-line measurement of the three signals can be reduced to the state estimation of the linear dynamic systems. A bank of Kalman filters is adaptively used to achieve the on-line accurate state estimation and to overcome changes in parameters in the linear dynamic models.

  • PDF

A Novel z-axis Accelerometer Fabricated on a Single Silicon Substrate Using the Extended SBM Process (Extended SBM 공정을 이용하여 단일 실리콘 기판상에 제작된 새로운 z 축 가속도계)

  • Ko, Hyoung-Ho;Kim, Jong-Pal;Park, Sang-Jun;Kwak, Dong-Hun;Song, Tae-Yong;Cho, Dong-Il;Huh, Kun-Soo;Park, Jahng-Hyon
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • This paper presents a novel z-axis accelerometer with perfectly aligned vertical combs fabricated using the extended sacrificial bulk micromachining (extended SBM) process. The z-axis accelerometer is fabricated using only one (111) SOI wafer and two photo masks without wafer bonding or CMP processes as used by other research efforts that involve vertical combs. In our process, there is no misalignment in lateral gap between the upper and lower comb electrodes, because all critical dimensions including lateral gaps are defined using only one mask. The fabricated accelerometer has the structure thickness of $30{\mu}m$, the vertical offset of $12{\mu}m$, and lateral gap between electrodes of $4{\mu}m$. Torsional springs and asymmetric proof mass produce a vertical displacement when an external z-axis acceleration is applied, and capacitance change due to the vertical displacement of the comb is detected by charge-to-voltage converter. The signal-to-noise ratio of the modulated and demodulated output signal is 80 dB and 76.5 dB, respectively. The noise equivalent input acceleration resolution of the modulated and demodulated output signal is calculated to be $500{\mu}g$ and $748{\mu}g$. The scale factor and linearity of the accelerometer are measured to be 1.1 mV/g and 1.18% FSO, respectively.