Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.
Communications for Statistical Applications and Methods
/
제12권3호
/
pp.705-712
/
2005
Biplot is a graphical display of the rows and columns of an n${\times}$p data matrix. In particular, Gabriel (1995) suggested the MANOVA biplot using singular value decomposition (SVD) with the averages of response variables according to treatment groups. But his biplot may cause wrong results by disregarding them when there exist covariate effects. In this paper, we will provide the MANCOA biplot based on the SVD with the parameter estimates for MANCOVA model when there exist covariate effects.
Biplot is a graphical display of the rows and columns an $n{\time}p$ data matrix. In particular, Gabriel(1981) suggested The MANOVA BIPLOT using singular value decomposition (SVD) with the averages of response variables according to treatment groups. But his biplot may cause wrong results by disregarding them when there exists covariate effects. In this paper, we will provide the MANCOVA BIPLOT based on the SVD with the parameter estimates for MANCOVA model when there exist covariate effects.
DNA칩의 유전자 발현 데이터의 통합적 분석을 위하여 매트랩을 기반으로 한 통합분석 프로그램을 구축하였다. 이 프로그램은 유전자 발현 분석을 위해 일반적으로 많이 쓰는 방법인 Hierarchical clustering(HC), K-means, Self-organizing map(SOM), Principal component analysis(PCA)를 지원하며, 이외에 Fuzzy c-means방법과 최근에 발표된 Singular value decomposition(SVD) 분석 방법도 지원하고 있다. 통합분석프로그램의 성능을 알아보기 위하여 효모의 포자형성(sporulation)과 정의 유전자발현 데이터를 사용하였으며, 각 분석 방법에 따른 분석 결과를 제시하였으며, 이 프로그램이 유전자 발현데이타의 통합적인 분석을 위해 효과적으로 사용될 수 있음을 제시하였다.
Singular Value Decomposition (SVD) 기반의 디콘볼루션 방식은 CT 관류 영상 해석에서 가장 널리 사용되는 기법이다. 이 방식에서는 잡음의 영향을 줄이기 위해 SVD 계수를 임계화하는 과정이 사용된다. 이 때 임계화 경계치로 고정된 값을 사용하거나 미리 정해진 진동 지수(Oscillation Index)에 따른 경계치가 사용된다. 이들 두 임계화 방식은 계산량과 정확도 측면에서 서로 장단점을 가지고 있다. 본 논문에서는 두 임계화 방식의 정확도를 비교하기 위한 몬테 칼로 모의 실험 방식을 제안한다. 또한 관류 해석시 사용하는 평활화 과정이 알고리즘의 정확도에 미치는 영향을 측정하기 위해 이 실험 방식을 확장하였다. 본 논문에서는 이와 같은 성능 비교를 위한 모의 실험 방식을 제시하고, 모의 데이터와 실제 CT 영상에 대한 실험 결과를 소개한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권12호
/
pp.5268-5285
/
2016
Digital watermarking techniques are widely applied to protect the integrity and copyright of digital content. In a majority of the literature for watermarking techniques, the watermarked image often causes some distortions after embedding a watermark. For image-quality-concerned users, the distortions from a watermarked image are unacceptable. In this article, we propose a removable watermarking scheme that can restore an original-like image and resist signal-processing attacks to protect the ownership of an image by utilizing the property of singular value decomposition (SVD). The experimental results reveal that the proposed scheme meets the requirements of watermarking robustness, and also reestablishes an image like the original with average PSNR values of 59.07 dB for reconstructed images.
In this letter, we propose a new compression method for a high dimensional support vector machine (SVM). We used singular value decomposition (SVD) to compress the norm part of a radial basis function SVM. By deleting the least significant vectors that are extracted from the decomposition, we can compress each vector with minimized energy loss. We select the compressed vector dimension according to the predefined threshold which can limit the energy loss to design criteria. We verified the proposed vector compressed SVM (VCSVM) for conventional datasets. Experimental results show that VCSVM can reduce computational complexity and memory by more than 40% without reduction in accuracy when classifying a 20,958 dimension dataset.
본 논문에서는 문서분류를 위하여 SVD(Singular Value Decomposition)을 이용한 효율적인 특징 선택 방법을 제안한다. 분류기 알고리즘은 문서를 효과적으로 분류할 수 있지만 분류기에 입력되는 특징공간이 너무 크다는 단점이 있다. SVD를 이용하면 입력 데이터의 차원을 줄여줄 수 있으며 문서와 문서 사이의 관계성을 내포하는 벡터공간을 만들 수 있다. 따라서 SVD를 이용하면 문서분류의 시간과 효율을 동시에 증가시킬 수 있다. 본 논문에서는 실험을 통하여 SVD을 이용한 문서분류 시스템이 입력데이터에 대한 차원을 감소시키면서 훌륭한 분류 결과를 얻을 수 있음을 보여준다.
본 논문에서는 특이값 분해(SVD: singular value decomposition)에 의한 기저 스펙트럼의 합성을 통해 혈소판 라만 스펙트럼에서 알츠하이머병(AD: Alzheimer's disease)을 검출하는 방법을 제안하였다. AD가 유도된 형질 전환 실험용 쥐의 혈소판에서 측정한 라만 스펙트럼은 가산 잡음과 배경 잡음의 제거와 정규화로 구성된 전처리 과정을 수행한다. 각 데이터 행렬의 열벡터는 AD와 정상(NR: normal)의 라만 스펙트럼으로 구성한다. 이 데이터 행렬을 SVD로 분해한 다음 각 행렬의 열벡터 12개를 AD와 NR의 기저 스펙트럼으로 결정한다. 분류 과정은 각 클래스의 기저 스펙트럼을 선형 합성한 스펙트럼과 분류 스펙트럼의 평균제곱근오차(root mean square error)가 최소인 클래스를 선택하는 것으로 완료된다. 278개의 혈소판 라만 스펙트럼을 사용한 실험에 따르면 제안한 방법의 평균 분류율은 약 97.6%로 주성분 분석(principle components analysis)으로 추출한 특징에 MLP(multi-layer perceptron)를 이용한 경우보다 약 6.1% 정도의 우수한 성능을 보였다. 이 결과에서 SVD에 의한 기저 스펙트럼이 혈소판 라만 스펙트럼에서 AD의 검출에 적합하게 사용될 수 있음을 확인하였다.
Time series analysis results show the SVD is a candidate of on-line monitoring of welding penetration when the covariance matrix of a full penetration is used as a mapping function. As the reconstructed embedding vectors from the chaotic scalar time series are manipulated by the covariance matrix, the mapped tim series lie on a hyper-ellipsoid which the lengths of semi-axes are the squared eigenvalues of the covariance matrix in the case of full penetration. These visualize by two dimensional stroboscope views. The other cases like partial penetration, are different in the sense of sizes and shapes. Here we test two types of time series; the ion current and the X-ray. The ion current is better than the X-ray as an on-line monitoring signal, because the difference of the eigenvalue spectrum of the ion(between the pull penetration and partial penetration) is bigger than those of the X-ray.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.