• 제목/요약/키워드: a SVD decomposition

검색결과 197건 처리시간 0.026초

Recognition of Radar Emitter Signals Based on SVD and AF Main Ridge Slice

  • Guo, Qiang;Nan, Pulong;Zhang, Xiaoyu;Zhao, Yuning;Wan, Jian
    • Journal of Communications and Networks
    • /
    • 제17권5호
    • /
    • pp.491-498
    • /
    • 2015
  • Recognition of radar emitter signals is one of core elements in radar reconnaissance systems. A novel method based on singular value decomposition (SVD) and the main ridge slice of ambiguity function (AF) is presented for attaining a higher correct recognition rate of radar emitter signals in case of low signal-to-noise ratio. This method calculates the AF of the sorted signal and ascertains the main ridge slice envelope. To improve the recognition performance, SVD is employed to eliminate the influence of noise on the main ridge slice envelope. The rotation angle and symmetric Holder coefficients of the main ridge slice envelope are extracted as the elements of the feature vector. And kernel fuzzy c-means clustering is adopted to analyze the feature vector and classify different types of radar signals. Simulation results indicate that the feature vector extracted by the proposed method has satisfactory aggregation within class, separability between classes, and stability. Compared to existing methods, the proposed feature recognition method can achieve a higher correct recognition rate.

MANCOVA Biplot

  • Choi Yong-Seok;Hyun Gee Hong;Jung Su Mi
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.705-712
    • /
    • 2005
  • Biplot is a graphical display of the rows and columns of an n${\times}$p data matrix. In particular, Gabriel (1995) suggested the MANOVA biplot using singular value decomposition (SVD) with the averages of response variables according to treatment groups. But his biplot may cause wrong results by disregarding them when there exist covariate effects. In this paper, we will provide the MANCOA biplot based on the SVD with the parameter estimates for MANCOVA model when there exist covariate effects.

다변량 공분산분석 행렬도

  • 정수미;최용석;현기홍
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.285-290
    • /
    • 2005
  • Biplot is a graphical display of the rows and columns an $n{\time}p$ data matrix. In particular, Gabriel(1981) suggested The MANOVA BIPLOT using singular value decomposition (SVD) with the averages of response variables according to treatment groups. But his biplot may cause wrong results by disregarding them when there exists covariate effects. In this paper, we will provide the MANCOVA BIPLOT based on the SVD with the parameter estimates for MANCOVA model when there exist covariate effects.

  • PDF

DNA칩 데이터 분석을 위한 유전자발연 통합분석 프로그램의 개발 (Program Development of Integrated Expression Profile Analysis System for DNA Chip Data Analysis)

  • 양영렬;허철구
    • KSBB Journal
    • /
    • 제16권4호
    • /
    • pp.381-388
    • /
    • 2001
  • DNA칩의 유전자 발현 데이터의 통합적 분석을 위하여 매트랩을 기반으로 한 통합분석 프로그램을 구축하였다. 이 프로그램은 유전자 발현 분석을 위해 일반적으로 많이 쓰는 방법인 Hierarchical clustering(HC), K-means, Self-organizing map(SOM), Principal component analysis(PCA)를 지원하며, 이외에 Fuzzy c-means방법과 최근에 발표된 Singular value decomposition(SVD) 분석 방법도 지원하고 있다. 통합분석프로그램의 성능을 알아보기 위하여 효모의 포자형성(sporulation)과 정의 유전자발현 데이터를 사용하였으며, 각 분석 방법에 따른 분석 결과를 제시하였으며, 이 프로그램이 유전자 발현데이타의 통합적인 분석을 위해 효과적으로 사용될 수 있음을 제시하였다.

  • PDF

CT 관류 영상 해석에서의 SVD 계수 임계화 기법의 성능 비교 (Comparison of Thresholding Techniques for SVD Coefficients in CT Perfusion Image Analysis)

  • 김낙현
    • 전자공학회논문지
    • /
    • 제50권6호
    • /
    • pp.276-286
    • /
    • 2013
  • Singular Value Decomposition (SVD) 기반의 디콘볼루션 방식은 CT 관류 영상 해석에서 가장 널리 사용되는 기법이다. 이 방식에서는 잡음의 영향을 줄이기 위해 SVD 계수를 임계화하는 과정이 사용된다. 이 때 임계화 경계치로 고정된 값을 사용하거나 미리 정해진 진동 지수(Oscillation Index)에 따른 경계치가 사용된다. 이들 두 임계화 방식은 계산량과 정확도 측면에서 서로 장단점을 가지고 있다. 본 논문에서는 두 임계화 방식의 정확도를 비교하기 위한 몬테 칼로 모의 실험 방식을 제안한다. 또한 관류 해석시 사용하는 평활화 과정이 알고리즘의 정확도에 미치는 영향을 측정하기 위해 이 실험 방식을 확장하였다. 본 논문에서는 이와 같은 성능 비교를 위한 모의 실험 방식을 제시하고, 모의 데이터와 실제 CT 영상에 대한 실험 결과를 소개한다.

A Robust and Removable Watermarking Scheme Using Singular Value Decomposition

  • Di, Ya-Feng;Lee, Chin-Feng;Wang, Zhi-Hui;Chang, Chin-Chen;Li, Jianjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5268-5285
    • /
    • 2016
  • Digital watermarking techniques are widely applied to protect the integrity and copyright of digital content. In a majority of the literature for watermarking techniques, the watermarked image often causes some distortions after embedding a watermark. For image-quality-concerned users, the distortions from a watermarked image are unacceptable. In this article, we propose a removable watermarking scheme that can restore an original-like image and resist signal-processing attacks to protect the ownership of an image by utilizing the property of singular value decomposition (SVD). The experimental results reveal that the proposed scheme meets the requirements of watermarking robustness, and also reestablishes an image like the original with average PSNR values of 59.07 dB for reconstructed images.

A New Support Vector Compression Method Based on Singular Value Decomposition

  • Yoon, Sang-Hun;Lyuh, Chun-Gi;Chun, Ik-Jae;Suk, Jung-Hee;Roh, Tae-Moon
    • ETRI Journal
    • /
    • 제33권4호
    • /
    • pp.652-655
    • /
    • 2011
  • In this letter, we propose a new compression method for a high dimensional support vector machine (SVM). We used singular value decomposition (SVD) to compress the norm part of a radial basis function SVM. By deleting the least significant vectors that are extracted from the decomposition, we can compress each vector with minimized energy loss. We select the compressed vector dimension according to the predefined threshold which can limit the energy loss to design criteria. We verified the proposed vector compressed SVM (VCSVM) for conventional datasets. Experimental results show that VCSVM can reduce computational complexity and memory by more than 40% without reduction in accuracy when classifying a 20,958 dimension dataset.

문서분류에서 SVD(Singular Value Decompotion)기법에 기초한 효율적인 특징 선택방법 연구 (An Efficient Selection Method for Document Classification Based On Singular Value Decompostion)

  • 리청화;변동률;박순철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.321-322
    • /
    • 2009
  • 본 논문에서는 문서분류를 위하여 SVD(Singular Value Decomposition)을 이용한 효율적인 특징 선택 방법을 제안한다. 분류기 알고리즘은 문서를 효과적으로 분류할 수 있지만 분류기에 입력되는 특징공간이 너무 크다는 단점이 있다. SVD를 이용하면 입력 데이터의 차원을 줄여줄 수 있으며 문서와 문서 사이의 관계성을 내포하는 벡터공간을 만들 수 있다. 따라서 SVD를 이용하면 문서분류의 시간과 효율을 동시에 증가시킬 수 있다. 본 논문에서는 실험을 통하여 SVD을 이용한 문서분류 시스템이 입력데이터에 대한 차원을 감소시키면서 훌륭한 분류 결과를 얻을 수 있음을 보여준다.

혈소판 라만 스펙트럼에서 특이값 분해에 의한 기저 합성을 통한 알츠하이머병 검출 (A screening of Alzheimer's disease using basis synthesis by singular value decomposition from Raman spectra of platelet)

  • 박아론;백성준
    • 한국산학기술학회논문지
    • /
    • 제14권5호
    • /
    • pp.2393-2399
    • /
    • 2013
  • 본 논문에서는 특이값 분해(SVD: singular value decomposition)에 의한 기저 스펙트럼의 합성을 통해 혈소판 라만 스펙트럼에서 알츠하이머병(AD: Alzheimer's disease)을 검출하는 방법을 제안하였다. AD가 유도된 형질 전환 실험용 쥐의 혈소판에서 측정한 라만 스펙트럼은 가산 잡음과 배경 잡음의 제거와 정규화로 구성된 전처리 과정을 수행한다. 각 데이터 행렬의 열벡터는 AD와 정상(NR: normal)의 라만 스펙트럼으로 구성한다. 이 데이터 행렬을 SVD로 분해한 다음 각 행렬의 열벡터 12개를 AD와 NR의 기저 스펙트럼으로 결정한다. 분류 과정은 각 클래스의 기저 스펙트럼을 선형 합성한 스펙트럼과 분류 스펙트럼의 평균제곱근오차(root mean square error)가 최소인 클래스를 선택하는 것으로 완료된다. 278개의 혈소판 라만 스펙트럼을 사용한 실험에 따르면 제안한 방법의 평균 분류율은 약 97.6%로 주성분 분석(principle components analysis)으로 추출한 특징에 MLP(multi-layer perceptron)를 이용한 경우보다 약 6.1% 정도의 우수한 성능을 보였다. 이 결과에서 SVD에 의한 기저 스펙트럼이 혈소판 라만 스펙트럼에서 AD의 검출에 적합하게 사용될 수 있음을 확인하였다.

전자빔 용접에서 SVD을 이용한 온라인 모니터링 (On-line Monitoring Using SVD in a Electron Beam Welding)

    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.97-103
    • /
    • 2000
  • Time series analysis results show the SVD is a candidate of on-line monitoring of welding penetration when the covariance matrix of a full penetration is used as a mapping function. As the reconstructed embedding vectors from the chaotic scalar time series are manipulated by the covariance matrix, the mapped tim series lie on a hyper-ellipsoid which the lengths of semi-axes are the squared eigenvalues of the covariance matrix in the case of full penetration. These visualize by two dimensional stroboscope views. The other cases like partial penetration, are different in the sense of sizes and shapes. Here we test two types of time series; the ion current and the X-ray. The ion current is better than the X-ray as an on-line monitoring signal, because the difference of the eigenvalue spectrum of the ion(between the pull penetration and partial penetration) is bigger than those of the X-ray.

  • PDF