• Title/Summary/Keyword: a Input Update Law

Search Result 10, Processing Time 0.025 seconds

Iterative Learning Control for Discrete Time Nonlinear Systems Based on an Objective Function (목적함수를 고려한 이산 비선형 시스템의 반복 학습 제어)

  • Jeong, Gu-Min;Park, Chong-Ho;Jang, Tae-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1147-1154
    • /
    • 2001
  • In this paper, a new iterative learning control scheme for discrete time nonlinear systems is proposed based on an objective function consisting of the output error and input energy. The relationships between the proposed ILC and the optimal control are described. A new input update law is proposed and its convergence is proved under certain conditions. In this proposed update law, the inputs in the whole control horizon are updated at once considered as one large vector. Some illustrative examples are given to show the effectiveness of the proposed method.

  • PDF

Estimation of learning gain in iterative learning control using neural networks

  • Choi, Jin-Young;Park, Hyun-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.91-94
    • /
    • 1996
  • This paper presents an approach to estimation of learning gain in iterative learning control for discrete-time affine nonlinear systems. In iterative learning control, to determine learning gain satisfying the convergence condition, we have to know the system model. In the proposed method, the input-output equation of a system is identified by neural network refered to as Piecewise Linearly Trained Network (PLTN). Then from the input-output equation, the learning gain in iterative learning law is estimated. The validity of our method is demonstrated by simulations.

  • PDF

Iterative learning control of nonlinear systems with consideration on input magnitude (입력의 크기를 고려한 비선형 시스템의 반복학습 제어)

  • Choi, Chong-Ho;Jang, Tae-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.3
    • /
    • pp.165-173
    • /
    • 1996
  • It is not desirable to have too large control input in control systems, because there are usually a limitation for the input magnitude and cost for the input energy. Previous papers in the iterative learning control did not considered on these points. In this paper, an iterative learning control method is proposed for a class of nonlinear systems with consideration on input magnitude by adopting a concept of cost function consisting of the output error and the input magnitude in quadratic form. We proposed a new input update law with an input penalty function. If we choose a reasonable input penalty function, the two control objectives, good command following and small input energy, can be achieved. The characteristics of the proposed method are shown in the simulation examples.

  • PDF

An Adaptive Tracking Control of SISO Nonlinear Systems (SISO 비선형 시스템의 적응 추종제어 기법)

  • Yang, Hyeon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.2
    • /
    • pp.1-7
    • /
    • 2000
  • In this paper, an adaptive control law for nonlinear systems represented by input-output models are proposed under the assumption that unknown system parameters are in a known compact and convex set. Contrary to the previous results, the compact and convex set is not restricted to a ball whose center is at the origin or convex hypercube. It is proven that the proposed parameter update rule produces a sequence of parameters which reside in the set and guarantees that the position, velocity, and acceleration error converges to zero as time goes to infinity. This theoretical result was justified through simulations.

  • PDF

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.

A Study on the Convergence Condition of ILC for Linear Discrete Time Nonminimum Phase Systems (이산 선형 비최소위상 시스템을 위한 반복 학습 제어의 수렴조건에 대한 연구)

  • Bae, Sung-Han;Ahn, Hyun-Sik;Jeong, Gu-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.1
    • /
    • pp.117-120
    • /
    • 2008
  • This paper investigates the convergence condition of ADILC(iterative learning control with advanced output data) for nonminimum phase systems. ADILC has simple learning structure including both minimum phase and nonminimum phase systems. However, for nonminimum phase systems, the overall time horizon must be considered in input update law. This makes the dimension of convergence condition matrix large. In this paper, a new sufficient condition is proposed to satisfy the convergence condition. Also, it has been shown that this sufficient condition can be satisfied although it is not full impulse response.

Iterative learning control of robot manipulators (로봇 매니퓰레이터의 반복 학습 제어)

  • 문정호;도태용;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.470-473
    • /
    • 1996
  • This paper presents an iterative learning control scheme for industrial manipulators. Based upon the frequency-domain analysis, the input update law of the learning controller is given together with a sufficient condition for the convergence of the iterative process in the frequency domain. The proposed learning control scheme is structurally simple and computationally efficient since it is independent joint control depending only on locally measured variables and it does not involve the computation of complicated nonlinear manipulator dynamics. Moreover, it is capable of canceling the unmodeled dynamics of the manipulator without even the parametric model. Several important aspects of the learning scheme inherent in the frequency-domain design are discussed and the control performance is demonstrated through computer simulations.

  • PDF

On the Convergence of ILC for Linear Discrete Time Nonminimum Phase Systems (이산 선형 시스템에 대한 반복 학습 제어의 수렴성에 대한 연구)

  • Jeong, Gu-Min;Ahn, Hyun-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.225-227
    • /
    • 2006
  • This note investigates the convergence condition of ADILC (iterative learning control with advanced output data) for nonminimum phase systems. ADILC has simple learning structure including both minimum phase and nonminimum phase systems. However, for nonminimum phase systems, the overall time horizon must be considered in input update law. This makes the dimension of convergence condition matrix large. In this paper, a new sufficient condition is proposed to satisfy the convergence condition. Also, it has been shown that this sufficient condition can be satisfied although it is not full impulse response.

  • PDF

Flight Control of Tilt-Rotor Airplane In Rotary-Wing Mode Using Adaptive Control Based on Output-Feedback (출력기반 적응제어기법을 이용한 틸트로터 항공기의 회전익 모드 설계연구)

  • Ha, Cheol-Keun;Im, Jae-Hyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.3
    • /
    • pp.228-235
    • /
    • 2010
  • This paper deals with an autonomous flight controller design problem for a tilt-rotor aircraft in rotary-wing mode. The inner-loop algorithm is designed using the output-based approximate feedback linearization. The model error originated from the feedback linearization is cancelled within allowable tolerance by using single-hidden-layer neural network. According to Lyapunov direct stability theory, the adaptive update law is derived to run the neural network on-line, which is based on the linear observer dynamics. Moreover, the outer-loop algorithm is designed to track the trajectory generated from way-point guidance. Especially, heading and flight-path angle line-of-sight guidance are applied to the outer-loop to improve accuracy of the landing tracking performance. The 6-DOF nonlinear simulation shows that the overall performance of the flight control algorithm is satisfactory even though the collective input response shows instantaneous actuator saturation for a short time due to the lack of the neural network and the saturation protection logic in that loop.

Enhanced Variable Structure Control With Fuzzy Logic System

  • Charnprecharut, Veeraphon;Phaitoonwattanakij, Kitti;Tiacharoen, Somporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.999-1004
    • /
    • 2005
  • An algorithm for a hybrid controller consists of a sliding mode control part and a fuzzy logic part which ar purposely for nonlinear systems. The sliding mode part of the solution is based on "eigenvalue/vector"-type controller is used as the backstepping approach for tracking errors. The fuzzy logic part is a Mamdani fuzzy model. This is designed by applying sliding mode control (SMC) method to the dynamic model. The main objective is to keep the update dynamics in a stable region by used SMC. After that the plant behavior is presented to train procedure of adaptive neuro-fuzzy inference systems (ANFIS). ANFIS architecture is determined and the relevant formulation for the approach is given. Using the error (e) and rate of error (de), occur due to the difference between the desired output value (yd) and the actual output value (y) of the system. A dynamic adaptation law is proposed and proved the particularly chosen form of the adaptation strategy. Subsequently VSC creates a sliding mode in the plant behavior while the parameters of the controller are also in a sliding mode (stable trainer). This study considers the ANFIS structure with first order Sugeno model containing nine rules. Bell shaped membership functions with product inference rule are used at the fuzzification level. Finally the Mamdani fuzzy logic which is depends on adaptive neuro-fuzzy inference systems structure designed. At the transferable stage from ANFIS to Mamdani fuzzy model is adjusted for the membership function of the input value (e, de) and the actual output value (y) of the system could be changed to trapezoidal and triangular functions through tuning the parameters of the membership functions and rules base. These help adjust the contributions of both fuzzy control and variable structure control to the entire control value. The application example, control of a mass-damper system is considered. The simulation has been done using MATLAB. Three cases of the controller will be considered: for backstepping sliding-mode controller, for hybrid controller, and for adaptive backstepping sliding-mode controller. A numerical example is simulated to verify the performances of the proposed control strategy, and the simulation results show that the controller designed is more effective than the adaptive backstepping sliding mode controller.

  • PDF