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Abstracts This paper presents an approach to estimation of learning gain in iterative learning control for

discrete-time affine nonlinear systems. In iterative learning control, to determine learning gain satisfying

the convergence condition. we have to know the system model. In the proposed method, the input-output

equation of a system is identified by neural network refered to as Piecewise Linearly Trained Network

(PLTN). Then from the input-output equation. the learning gain in iterative learning law is estimated.

The vahdity of our method is demonstrated by simulations.
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1. Introduction

Iterative learning control is a technique for improv-
ing the performance of systems that operate repetitively
over a fixed time interval. The purpose of iterative
learning control is to find the desired control trajectory
which makes the system output to follow the desired
trajectory exactly over a finite time interval. By ob-
serving the behavior of a system in each trial, the input
at the next trial is calculated by iterative learning law.

Open loop iterative control has demerit that the sys-
tem output can be extremely large during the learning
procedure. For this reason, iterative learning control
for feedback nonliear system was proposed, and showed
good result for two link robot maninpulator [1]. Jang [2]
found out the convergence condition in iterative learn-
ing control for feedback nonlinear system. However in
practical system, we cannot know whether the conver-
gence condition 1s satisfied if we don’t know the sys-
tem model. If there is modeling error, or the change
of system parameters during the process. the conver-
gence condition can be broken and the system output
may not. converge to the desired trajectory. Hence it
is desirable to find iterative learning gain satisfying the
convergence condition even if we don’t know the system
dynamics.

In this paper, we propose a method to estimate learn-
ing gain in the iterative learning law from only input
and output measurements. PLTN(piecewise linearly
trained network) [3] is used to estimate learning gain.
In the proposed method. we don't need to know the sys-
tem dynamics except for system dimension and relative
degree. Our method not only guarantees the conver-
gence in iterative learning control for nonliear feedback
system, but also shows fast convergence. In section 2.
the convergence condition of iterative learning control
for feedback nonlinear systems is described. Section 3
and 4 present the method of estimating learning gain
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from input-output data. In section 5, we will show the
validity of the proposed method by simulations. Clon-
clusion 1s given in section 6.

2. Iterative Learning (‘ontrol for Nonlinear
Feedback Svstems

Consider a discrete-time affine nonlinear system with
relative degree d.

x(t+ 1) = F(x(7)+ Gx(@))u(q).
y(i) = hix(i)). ()
where u,y € R are the input and output respectively,
and x = [, -.2,]T € N is a state vector. Since the

relative degree of this system is d, the input signal u(&)
influences the output y(k + ). That is,

¢] . .
—ho FI(F(x)+ G(x)u) =0,
du

J(x, u) = %I}OF‘“’(F(XH—G(X)U) £0 (2)

j<d-1

The structure of iterative learning control for a non-
linear feedback system is shown in Fig . In this figure.
uff'f 1s feedforward input which is obtained by iterative
learning. If the feedforward input becomes the desired
input which makes the system output the same as the
the desired output by iterative learning, the input by
feedback controller becomes zero.

Iterative learning procedure to ohtain the desired
feedforward input wyy is illustrated in the following.
Here % represents iteration step, u%(i) 1s feedforward
input by iterative learning control at step &, and u‘,@b(i)
is input by feedback control.

1) Design a feedback controller which stabilizes a non-
linear system.
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Figure 1: The structure of iterative learning control for
a feedback nonlinear system

2) At the first iteration step, i.e., k = 0, only feedback
controller is used. Hence u} (i) =0

3) Apply input trajectory u*(i) = u}'f( )+ufb( ) to the
system, and obtain the output trajectory y*(i).

4) Calculate the next step input trajectory from u*(i)

and output error ¥ (i) = y (i) — y* (i).
W FHE) = 1) e () (3)

5) Repeat step 3)-4) until the output error becomes
smaller than the permitted error for / € [0, N].

In the above procedure, what is nmportant is how to
obtain the input trajectory of the next trial, ul‘f'}” from
the output error and input trajectory, i.e., how to ob-
tain equation (3). One of the method to find the next
input trajectory was suggested by Jang [2].

Theorem 1

Let the input update equation in the iterative learning
control for feedback nonlinear system (1) be like the
following.

uh (i) = uF (i) + SE(Her (i + d), i € [0, N], (4)
where, S* : [0, \'] ?R is a bounded function, and
ef(iy = ¥ (i) — y* (i), i € [0, N + d] is the output tra-

jectory error.
If, S* (i) satisfies the following inequality for i € [0, N],

()

then, as k — oc the output trajectory error converges
to zero uniformly for 7 € [0, N], i.e

1= Sk TN <p <1

Jim lle¥ ()| = 0, Vie[0,N] (6)
0

We call J(x,u) in (2) and (5) decoupling matrix in
the MIMO system. From the convergence condition in

(5) S*(i) can be chosen as the following.

(1)
When equation (7) holds. the convergence of the system
output to the desired output is very fast. If we know
the state equation of a system, from the definition of
J in equation (2) we can calculate S*(i) = J~1(x*(1)).
However, when the state equation is unknown, .J (x* ()
cannot be obtained directly. In the next section, we sug-
gest the method to find J(x*(i)) when the state equa-
tion of the system is unknown.
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3. Input Update Law In Case Of Unknown
State Equation

The system (1) can be expressed in input-output
equation form as the following.

yi+1) = fo(x(i) + go(x())u(t —~d + 1)
x()) = [yi—n+1),-- y).
w(i—d—m+ 1), u(i—d)] (8)
Let us define state variable x like the following.
i) = yi—n4+j) j=12.---/n
Zppj(f) = uwli—-m—d+j), j=12.--- - m+d-1
X(I) = ['Pl(i)~"'v‘l’n+771+d-l(i)] (9)

For the state variable defined in the above equations,
the following relation is held.

ri+1) = xjp(), g=12.---.n—1
eali+ 1) = folx()] 4 go[X(D]rn4mg1(0)
Fapii4+1) = rugj4100)
J=12 - m+d-2
Lnymyd-1(T+1) = u(r) (10)

The above equations can be expressed in the form of
(1), and the result is,

x(+1) = F(x(i) 4 G(x(i)uli)
y(i) = h{x(i)) (11)
where,
[ z2(1) 1
r3(1)
F(X(I)) — fO[i(I)] 'Jn[ (()]ln+m+1(i)
Tyt [)
-l'n+m-|.-d—1(i)
- 0 -l
0
Gix(i)) = | °
0
L1
h(x(5)) = wn(i) (12)

From the definition of J in (2), we can obtain .J.

¢
T uli) = gomsh o P (FGx(i) + Glx(iati)
= golx(i+d— 1)
= golyi+d—n). - yli+d-1),
u(i —m), -, u(i—1)] (13)

From (4),(7) and (13). the input update equation
which makes the output trajectory converge fast to the



desired trajectory is expressed in the following equa-
tion.
uy 1) ut (i) + TP ()R (i 4+ d)
= M)+ (go[x(i + d — D))" (i + d)
ie[0,N] (14)

In case that we don’t know the system dynamics,
we can approximate the input-output equation using
neural networks. From the approximated input-output
equation we can obtain approximated gg(-), i.e.. go(-),
inverse of the estimated learning gain. We will show
the details in the next section.

4. Estimation of .J using PLTN

To estimate .J = go(-) only from input and output
data, we use PLTN(Piecewise Linearly Trained Net-
work) . The structure of PLTN is shown in figure 2.

Input-output equation (8) for output y(7 + d) is,

Jolx(i +d — 1)) + go(x(i + d — 1))u(i)

[yli+d—mn), - yli+d—-1).
(i —m), - u(i —1)]

y(i +d)
x(i+d—1)

I

(15)

Equation {15)can be approximated using PLTN like
the following method.

M
Sy (x(i+d = 1)

yli+dy =
j=1
(W] %(i+d— 1)+ aju(i)+ 3)}
M
= Z,vj(i(i+d—1))(wffc(i+d—1)+3j)
j=1
M
+ > (x(i 4+ d = 1))aju(i)
j=1
= fox(i +d—=1)) + go(x(i +d — 1))u(i)16)
where
M
fo(x(k) = )i (R(W)(WIR(K) + 3))
j=1
M
go(X(k)) = Y i (x(k))ay. (17)
i=1

where w; iIs a (n+m+d+1)-dimensional parameter
vector and Jj is a bias constant. This function is equiv-
alent to the McCulloch-Pitts neuron model [4] except
the nonlinearity of threshold. The f;(x) is the localiz-
ing function based on the radial basis function (RBF):

/7).
M
l’j(i)/z Hm (X),

m=1

yj(i) = PX[)(—H)Z—CJ' j:l.“',A‘[(lg)

(19)

i

jij (%)
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Figure 2: Neural Network to estimate J

x —¢;|| is Euclidean distance between the input
x and the centeral point ¢; of y(x). and M is the total
number of processing untts. The vigilance parameter 1
determines the size of the local neighborhood.

Now the input update equation can be expressed like
the following ,where go(-) in (14) is changed with the
approximated function go(-).

where

A NOE uF (D) + (go[RG+d =D)L G+ d) (20)

To train the PLTN (16), we use a training method
with self-organizing and linear fitting technique de-
scribed in our previous work [3]. The unsupervised
learning for the Receptive Field (RF) node ! is high-
lighted by the self-organizing capability representing
the automatic recruitment of new processing units
whenever there is no RF node covering the new state.
The parameters of Linear Fitting (LF) node ” is up-
dated by the recursive least squares method [3]. Since
only the winning LF node ® updates its parameters,
the computational complexity for training is similar to
that of the linear system identification. It is interest-
ing to note that this computational complexity is much
smaller than that of multilayver feedforward neural net-
work. Furthermore its training speed is fast due to
linear fitting approach.

5. Simulation

The proposed method was applied to the following
discrete-time nonliear system with relative degree d =
3:

yi+2)+y(i + 1)
T+ (i +2)+y2(i+ 1)
+(1 4 ¥ (i + 2))uli).

y(i +3)

(21)
The following signal was used for the desired output.

Y (i) = sin(wi/30). i€ [0.60] (22)

!RF node generates the function g, (-).

?LF node generates the function gy ().

The winning LF node is the LF node corresponding to the
RF node with the largest function value for the current state
X{k).



‘desired ——
k=0 o
fose

10 ---
1

-0.5

output

60

Figure 3: Learning procedure of the desired trajectory

We designed proportional controller with gain 0.2 as
the stabilizing controller. Fig 3 and 4 shows the re-
sult of siimulation for system (21). These figures show
that as the iterative learning process goes, the output
trajectory of the system converges to the desired tra-
jectory. To prevent the output from becoming large
during iterative learning, we multiplied S¥ (i) by a pos-
itive constant smaller than 1. In the system (21) used
in the simulation, the output diverges if the input range
becomes large. That is, system (21) 1s open-loop un-
stable system. Hence, we cannot train the neural net-
works to approximate gg(-) for large input. Therefore
if the input becomes large during the control, the esti-
mated function gg(-) becomes very different from go(-).
In this reason, we multiplied S*(i) by a positive con-
stant smaller than 1.

6. Conclusion

In this paper. we proposed iterative learning control
for systems with unknown dynamics. From the input
and output data, learning gain in input update law is
estimated using neural networks. We used PLTN as an
approximating neural network. By using the proposed
method, we can make the output trajectory of the un-
known system except for system dimension and relative
degree converge to the desired trajectory.
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