• Title/Summary/Keyword: ZrO$_2$ 분말

Search Result 180, Processing Time 0.028 seconds

Preparation and Properties of Ru based Thick Film Resistors (Ru 계 후막저항체의 제조 및 특성 연구)

  • 김창은
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.2 no.1
    • /
    • pp.19-28
    • /
    • 1995
  • RuO2 함량을 각각 달리한 pyrochlore 구조의 Pb2Ru2O6.5분말을 제조하여 이 분말과 유기 vehicle 유기용매를 혼합하여 저항 페이스트를 제조한후 인쇄, 소결과정을 거쳐 전반적 인 물성을 분석하였고 두 종류의 페이스트에 TCR보정용 첨가제로서 ZrO2를 첨가한 경우 처가량에 따라 저항값은 크게 변화하였으나 TCR 은 약간의 변화를 보였으며 Nb2O5의 경우 저항값이 크게 증가하였으며 TCR은 2wt%까지 첨가시 매우 안정적인 값을 나타내었다. 고 정항의 경우 CuO의 첨가시 저항값이 크게 감소 하였으며 TCR은 첨가량에 따라 증가하였 으나 3wt%이상 첨가시 저항체 표면이 심하게 거칠어지는 결과를 보였다.

Thermo-Mechanical Properties of Al2TiO5 Ceramics Stabilized with MgO and ZrO2 Additives (MgO와 ZrO2가 첨가된 Al2TiO5 세라믹의 열·기계적 물성)

  • Kim, Da-Mi;Kim, Hyung-Tae;Kim, Hyeong-Jun;Kim, Ik-Jin;Choi, Seong-Cheol;Kim, Yong-Chan;NamKung, Jung;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.4
    • /
    • pp.253-258
    • /
    • 2012
  • The characteristics of $Al_2TiO_5$ ceramics were influenced by the additives and the heat treatment that controls the microcrack behavior at grain boundaries. The effect of additives on $Al_2TiO_5$ ceramics were investigated in terms of mechanical properties and thermal expansion at high temperature. The $Al_2TiO_5$ were synthesized at $1500^{\circ}C$, $1550^{\circ}C$ and $1600^{\circ}C$ for 2h by reaction sintering. The formation of $Al_2TiO_5$ phase was increased by additives that enhanced the volume of the microcrack that can lead to low thermal expansion. The mechanical properties of the stabilized $Al_2TiO_5$ ceramics were increased remarkably at $1100^{\circ}C$, $1200^{\circ}C$ and $1300^{\circ}C$ due to the oneset of mechanical healing of grain-bondary microcracks at a high temperature. The amount of microcrack was decreased at lower sintering temperature that causes the increase of mechanical properties at high temperature.

The Effect of Reaction Parameters in the Characteristic of PZT Powders Synthesized by SHS (SHS법으로 합성된 PZT분말의 특성에 미치는 반응변수의 영향)

  • Kim, Byeong-Beom;Yang, Beom-Seok;Yun, Ki-Seok;Won, Chang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.5 s.276
    • /
    • pp.314-318
    • /
    • 2005
  • The effect of reaction parameters in the characteristic of $Pb(Zr_{0.52}Ti_{0.48})O_3$ (below nominal PZT) powders by SHS was investigated in this study. In the preparation of PZT, the effect of starting material contents, pressure, additive on phase fraction and morphology was investigated respectively. The optimum condition of PZT powders were prepared by SHS is $0.37Pb_3O_4+0.52ZrO_2+0.48TiO_2+0.35KClO_3+0.5C,\;(P_{Ar}= 50 atm)$. The PZT powder synthesized in this condition had an spherical shape and the particle size of 0.8$\mu$m.

Dispersion Control and Characterization of the SiO2/PMMA Particles Using Surface Charge (표면전하를 이용한 SiO2/PMMA 분말의 분산 제어 및 평가)

  • Kang, Yubin;Son, Soojung;Lee, Kun-Jae
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.403-407
    • /
    • 2015
  • Poly-methylmetacrylate (PMMA) is mainly applied in the plastic manufacturing industry, but PMMA is weak and gradually got discolor. The strength of PMMA can be improved through organic-inorganic hybrid nano composites with inorganic nano particles such as, $SiO_2$ or ZrO. However, inorganic nano particles are mostly agglomerated spontaneously. In this study, the zeta potential is controlled using different types of organic solvent with different concentrations, dispersibillity of $SiO_2$ nano particles on the PMMA particle are analyzed. When 3 M acetic acid is used, absolute value of the zeta potential is higher, $SiO_2$ nano particle is well attached, and dispersed on the PMMA particle surface. Results indicate that the absolute value of the zeta potential affects the stability of $SiO_2$ dispersion.

Synthesis and crystallization of nanosized zirconia powder using hydrothermal process (수열반응에 의한 나노 지르코니아 분말의 합성 및 결정화)

  • 노희진;이종국;서동석;황규홍
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.3
    • /
    • pp.126-132
    • /
    • 2002
  • The nanocrystalline zirconia powder with anisotropic shapes was synthesized by hydrothermal treatment of the tetragonal zirconia prepared by aging the zirconium hydroxide precipitate, which was obtained from the reaction between $ZrOCl_2{\cdot}8H_2O$ and KOH solutions under the fixed pH of 13.5, at $100^{\circ}C$ for 24 h. With increasing the hydrothermal reaction temperature and time, the fraction of tetragonal phase with spherical zirconia decreased, whereas, relatively the fraction of monoclinic phase with spindle-like and rod shape zirconia increased. As increased concentration of the NaOH solution it promoted the particle size to become larger and the crystalline phase to transform tetragonal to monoclinic. However, the specific surface area at the early stage of the reaction increased and subsequently decreased because of grain growth in powder with longer reaction time.

Fabrication and Microstructure of Hydroxyapatite Coating Layer by Plasma Spraying (플라즈마 용사법에 의한 Hydroxyapatite코팅층의 제조와 미세구조)

  • 이치우;오익현;이형근;이병택
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.259-265
    • /
    • 2004
  • The microstructure of nano-sized hydroxyapatite (HAp) powders coating layer on ZrO$_2$ substrate was investigated, which was formed by plasma spray process. The nano-sized HAp powders were successfully synthesized by precipitation of Ca(NO$_3$)$_2$$.$4H$_2$O and (NH$_4$)$_2$HPO$_4$ solution. The HAp coating layer with thickness of 150∼250 $\mu\textrm{m}$ was free from the cracks at interfaces between the coating and ZrO$_2$ substrate. In the plasma sprayed HAp coating layer, the undesirable phases were not found, while in the HAp coating layer heat-treated at 800$^{\circ}C$, TTCP, and ${\beta}$-TCP phase were detected as well as HAp phase. However, at 900$^{\circ}C$, they were completely disappeared. At 1100$^{\circ}C$, XRD analysis revealed that the coating layer was composed of the highly crystallized HAp.

Formation of $SnO_2$Coating Layer on the Surface of ZnS Powders (ZrS 분말표면상에 $SnO_2$코팅막의 형성)

  • 강승구;김강덕
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.3
    • /
    • pp.287-292
    • /
    • 2001
  • 본 실험은 목적은 CRT(Cathode Ray Tube)용 청색 형광체인 ZnS:Ag 분말 표면에 액상법으로 SnO$_2$를 균일하게 코팅하는 공정조건을 연구하는 것이다. 용매로서 물을 사용하고, Sn의 공급물질로서 SnCl$_4$.4$H_2O$, 침전 촉매로서 CO(NH$_2$)$_2$를 각각 사용하여, 균일 침전 방법으로 ZnS:Ag 분말표면에 SnO$_2$를 코팅할 수 있었다. 초기에 첨가되는 SnCl$_4$.4$H_2O$의 량이 Sn/Zn의 몰비기준으로 0.017인 경우에 ZnS:Ag 분말표면에 Sn(OH)$_4$가 균일하게 코팅되지만, 그 이상 첨가되면 과량의 Sn(OH)$_4$가 입자들 사이에 응집되었다. 코팅된 Sn(OH)$_4$는 비정질 구조로 규명되었으며, 이를 SnO$_2$결정상으로 전이시키기 위하여 300~$700^{\circ}C$ 범위 내에서 열처리를 행하였다. 비정질 Sn(OH)$_4$는 20$0^{\circ}C$이하에서 탈수되었고 45$0^{\circ}C$부터 SnO$_2$로 결정화되기 시작하였다. 순수한 ZnS의 경우, 50$0^{\circ}C$이하에서는 상변화가 없으나, $600^{\circ}C$에서 일부 산화되었으며 $700^{\circ}C$에서는 완전히 ZnO로 산화되므로, ZnS의 산화방지 및 SnO$_2$의 결정화를 동시에 만족하는 최고 열처리온도는 50$0^{\circ}C$로 규명되었다. 그러나 ZnS에 SnO$_2$가 코팅된 시편의 경우에는 $600^{\circ}C$가 되어도 ZnS 상이 거의 산화되지 않았고, $700^{\circ}C$에서도 ZnS와 ZnO 상이 공존한 것으로 보아 SnO$_2$코팅이 ZnS의 산화를 억제하는 것으로 나타났다.

  • PDF

Hydrothermal Synthesis and Mechanical Characterization of 3mol%Y2O3-ZrO2 by Urea Contents (우레아 첨가량 변화에 따라 수열합성법으로 제조 된 3mol%Y2O3-ZrO2 분말의 합성 및 기계적 특성 평가)

  • Lee, Hak-Joo;Go, Myung-Won;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.21 no.8
    • /
    • pp.425-431
    • /
    • 2011
  • The industrial manufacturing of YSZ products can be summarized as a three step process: a) hydrolysis of zirconyl chloride and mixing of other solutions, b) precipitation, and c) calcination. The addition of ammonia or OH- is essential in the precipitation process. However, a strong agglomeration was observed in the results of an ammonia or OH- addition. Thus, it is necessary to disperse the powders smoothly in order to improve the mechanical strength of YSZ. In this study, YSZ was synthesized using the urea stabilizer and hydrothermal method. YSZ powders were synthesized using a hydrothermal method with Teflon Vessels at $180^{\circ}C$ for 24 h. The mole ratio of urea to Zr was 0, 0.5, 1, and 2. The crystal phase, particle size, and morphologies were analyzed. Rectangular specimens ($33\;mm{\times}8\;mm{\times}1{\pm}0.5\;mm$) for three-point bend tests were used in the mechanical properties evaluation. The crystalline of YSZ powders observed a tetragonal phase in the sample with a ratio of Zr:urea = 1:2 addition and a hydrothermal reaction time of 24 h. The average primary particle size of YSZ was measured to be 9 nm to 11 nm. The agglomerated particle size was measured from 15 nm to 30 nm. The three-point bending strength of the YSZ samples was 142.47 MPa, which is the highest value obtained for the Zr:urea = 1:2 ratio addition YSZ sample.

Fabrication of Solid State Electrolyte Li7La3Zr2O12 thick Film by Tape Casting (테잎캐스팅을 이용한 전고체전해질 Li7La3Zr2O12 후막 제조)

  • Shin, Ran-Hee;Son, Samick;Ryu, Sung-Soo;Kim, Hyung-Tae;Han, Yoon-Soo
    • Journal of Powder Materials
    • /
    • v.23 no.5
    • /
    • pp.379-383
    • /
    • 2016
  • A thick film of $Li_7La_3Zr_2O_{12}$ (LLZO) solid-state electrolyte is fabricated using the tape casting process and is compared to a bulk specimen in terms of the density, microstructure, and ion conductivity. The final thickness of LLZO film after sintering is $240{\mu}m$ which is stacked up with four sheets of LLZO green films including polymeric binders. The relative density of the LLZO film is 83%, which is almost the same as that of the bulk specimen. The ion conductivity of a LLZO thick film is $2.81{\times}10^{-4}S/cm$, which is also similar to that of the bulk specimen, $2.54{\times}10^{-4}S/cm$. However, the microstructure shows a large difference in the grain size between the thick film and the bulk specimen. Although the grain boundary area is different between the thick film and the bulk specimen, the fact that both the ion conductivities are very similar means that no secondary phase exists at the grain boundary, which is thought to originate from nonstoichiometry or contamination.

Synthesis and Characterization of Nanoporous Zirconia (나노세공 Zirconia의 합성 및 특성평가)

  • Woo, Seung-Sik;Kim, Ho-Kun
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.309-314
    • /
    • 2007
  • Zirconia powders with nano size pores and high specific surface areas were synthesized via aqueous precipitation and hydrothermal synthetic method using $ZrOCl_28H_2O$ and $NH_4OH$ under pH=11 and ambient condition. By this reaction. zirconia hydrate $(ZrO_x(OH)_{4-2x})$ was primarily synthesized and the obtained zirconia hydrate was heat treated hydrothermally using an autoclave at various temperatures under pH=11. X-ray diffraction, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, FT-IR, Raman, Particle size analysis, DTA-TG, and BET techniques were used for the characterization of the powder. The synthesized zirconia showed an amorphous phase, however, the phase was transformed to the crystalline state during the hydrothermal process. The observed crystalline phase above $160^{\circ}C$ was a mixed phase of monoclinic and tetragonal zirconia. By the BET analysis, it was found that the specific surface area was ranged in $126{\sim}276m^2/g$ and the zirconia had the cylindrical shaped pores with average diameter of $2{\sim}7nm$.