DOI QR코드

DOI QR Code

Fabrication of Solid State Electrolyte Li7La3Zr2O12 thick Film by Tape Casting

테잎캐스팅을 이용한 전고체전해질 Li7La3Zr2O12 후막 제조

  • Shin, Ran-Hee (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology(Icheon)) ;
  • Son, Samick (Environment & Energy Research Team, Automotive Research & Development Division, Hyundai Motor Group) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology(Icheon)) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology(Icheon)) ;
  • Han, Yoon-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology(Icheon))
  • 신란희 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 손삼익 (현대기아자동차 환경에너지연구팀) ;
  • 류성수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 김형태 (한국세라믹기술원 이천분원 엔지니어링세라믹센터) ;
  • 한윤수 (한국세라믹기술원 이천분원 엔지니어링세라믹센터)
  • Received : 2016.09.13
  • Accepted : 2016.10.21
  • Published : 2016.10.28

Abstract

A thick film of $Li_7La_3Zr_2O_{12}$ (LLZO) solid-state electrolyte is fabricated using the tape casting process and is compared to a bulk specimen in terms of the density, microstructure, and ion conductivity. The final thickness of LLZO film after sintering is $240{\mu}m$ which is stacked up with four sheets of LLZO green films including polymeric binders. The relative density of the LLZO film is 83%, which is almost the same as that of the bulk specimen. The ion conductivity of a LLZO thick film is $2.81{\times}10^{-4}S/cm$, which is also similar to that of the bulk specimen, $2.54{\times}10^{-4}S/cm$. However, the microstructure shows a large difference in the grain size between the thick film and the bulk specimen. Although the grain boundary area is different between the thick film and the bulk specimen, the fact that both the ion conductivities are very similar means that no secondary phase exists at the grain boundary, which is thought to originate from nonstoichiometry or contamination.

Keywords

References

  1. R. Murugan, V. Thangadurai and W. Weppner: Angew Chem. Int. Ed. 46 (2007) 7778. https://doi.org/10.1002/anie.200701144
  2. R. Murugan, S. Ramakumar and N. Janani: Electrochem. Commun. 13 (2011) 1373. https://doi.org/10.1016/j.elecom.2011.08.014
  3. S. Kumazaki, Y. Iriyama, K. Kim, R. Murugan, K. Tanabe, K. Yamamoto, T. Hirayama and Z. Ogumi: Electrochem. Commun. 13 (2011) 509. https://doi.org/10.1016/j.elecom.2011.02.035
  4. M. Huang, A. Dumon and C. Nan: Electrochem. Commun. 21 (2012) 62. https://doi.org/10.1016/j.elecom.2012.04.032
  5. A. Dumon, M. Huang, Y. Shen and C. Nan: Solid State Ionics, 243 (2013) 36. https://doi.org/10.1016/j.ssi.2013.04.016
  6. C. Deviannapoorani, L. Dhivya, S. Ramakumar and R. Murugan: J. Power Sources, 240 (2013) 18. https://doi.org/10.1016/j.jpowsour.2013.03.166
  7. S. Toda, K. Ishiguro, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto and N. Imanishi: Solid State Ionics, 233 (2013) 102. https://doi.org/10.1016/j.ssi.2012.12.007
  8. R. Chen, M. Huang, W. Huang, Y. Shen, Y. Lin and C. Nan: Solid State Ionics, 265 (2014) 7. https://doi.org/10.1016/j.ssi.2014.07.004
  9. J. Ahn, S. Park. J. Lee, Y. Park and J. Lee: J. Power Sources, 254 (2014) 287. https://doi.org/10.1016/j.jpowsour.2013.12.115
  10. M Huang, M. Shoji, Y. Shen, C. Nan, H. Munakata and K. Kamnamura: J. Power Sources, 261 (2014) 206. https://doi.org/10.1016/j.jpowsour.2014.03.070
  11. W. Gu, M. Ezbiri, R. Rao, M. Avdeev and S. Adams: Solid State Ionics, 274 (2015) 100. https://doi.org/10.1016/j.ssi.2015.03.019
  12. A. Hubaud, S. Schroeder, B. Ingram, J. Okasinski and J. Vaughey: J. Alloys Compd, 644 (2015) 804. https://doi.org/10.1016/j.jallcom.2015.05.067
  13. I. Kokal, M. Somer, P. Notten and H. Hintzen: Solid State Ionics, 185 (2011) 42. https://doi.org/10.1016/j.ssi.2011.01.002
  14. Y. Shimonishi, A. Tada, T. Zhang, A. Hirano, N. Imanishi, O. Yamamoto and Y. Taketa: Solid State Ionics, 183 (2011) 48. https://doi.org/10.1016/j.ssi.2010.12.010
  15. R. Takano, K. Tadanaga, A. Hayashi and M. Tatsumisago: Solid State Ionics, 255 (2014) 104. https://doi.org/10.1016/j.ssi.2013.12.006
  16. M. Kotobuki and M. Koishi: Ceram. Int. 40 (2014) 5043. https://doi.org/10.1016/j.ceramint.2013.09.009
  17. N. Rosenkiewitz, J. Schuhmacher, M. Bockmeyer and J. Deubener: J. Power Sources, 278 (2015) 104. https://doi.org/10.1016/j.jpowsour.2014.12.066
  18. K. Tadanaga, H. Egawa, A. Hayashi, M. Tatsumisago, J. Mosa, M.Aparicio, and A. Duran: J. Power Sources, 273 (2015) 844. https://doi.org/10.1016/j.jpowsour.2014.09.164
  19. M. Huang, T. Liu, Y. Deng, H. Geng, Y. Shen, Y. Lin and C. Nan: Solid State Ionics, 204 (2011) 41.
  20. M. Kotobuki, K. Kanamura, Y. Sato and T. Yoshida: J. Power Sources, 196 (2011) 7750. https://doi.org/10.1016/j.jpowsour.2011.04.047
  21. M. Kotobuki, K. Kanamura, Yo. Sato, K. Yamamoto and T. Yoshida: J. Power Sources, 199 (2012) 346. https://doi.org/10.1016/j.jpowsour.2011.10.060
  22. S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani and T. Asaoka: J. Power Sources ,265 (2014) 40. https://doi.org/10.1016/j.jpowsour.2014.04.065
  23. Y. Zhang, F. Chen, R. Tu, Q. Shen and L. Zhang: J. Power Sources, 268 (2014) 960. https://doi.org/10.1016/j.jpowsour.2014.03.148
  24. S. Baek, J. Lee, T. Kim, M. Song and Y. Park: J. Power Sources, 249 (2014) 197. https://doi.org/10.1016/j.jpowsour.2013.10.089
  25. J. Lee, T. Kim, S. Baek, Y. Aihara, Y. Park, Y. Kim and S. Doo: Solid State Ionics, 258 (2014) 13. https://doi.org/10.1016/j.ssi.2014.01.043
  26. C. Cao, Z. Li, X. Wang, X. Zhao and W. Han: Frontiers in Energy Research, 2 (2014) 1.