• Title/Summary/Keyword: ZrC

Search Result 1,787, Processing Time 0.029 seconds

Ferroelectric properties of BLT films deposited on $ZrO_2$Si substrates

  • Park, Jun-Seo;Lee, Gwang-Geun;Park, Kwang-Hun;Jeon, Ho-Seung;Im, Jong-Hyun;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.172-173
    • /
    • 2006
  • Metal-ferroelectric-insulator-semiconductor (MFIS) structures with $Bi_{3.35}La_{0.75}Ti_3O_{12}$ (BLT) ferroelectric film and Zirconium oxide ($ZrO_2$) layer were fabricated on p-type Si(100). $ZrO_2$ and BLT films were prepared by sol-gel technique. Surface morphologies of $ZrO_2$ and BLT film were measured by atomic force microscope (AFM). The electrical characteristics of Au/$ZrO_2$/Si and Au/BLT/$ZrO_2$/Si film were investigated by C-V and I-V measurements. No hysteretic characteristics was observed in the C-V curve of the Au/$ZrO_2$/Si structure. The memory window width m C-V curve of the Au/BLT/$ZrO_2$/Si diode was about 1.3 V for a voltage sweep of ${\pm}5$ V. The leakage current of Au/$ZrO_2$/Si and Au/BLT/$ZrO_2$/Si structures were about $3{\times}10^{-8}$ A at 30 MV/cm and $3{\times}10^{-8}$ A at 3 MV/cm, respectively.

  • PDF

Fabrication and dielectric properties of $LaAlO_3-BaZrO_3$ perovskites ($LaAlO_3-BaZrO_3$계 perovskites의 제조 및 유전특성)

  • Lee, So-Hee;Kim, Shin;Shin, Hyun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.325-325
    • /
    • 2007
  • The perovskites in the $LaAlO_3-BaZrO_3$ system (i.e., $(1-x)LaAlO_3-xBaZrO_3$ were fabricated by a solid state reaction and their dielectric properties were investigated. For the compositions of x=0.1~0.9, the mixture of $LaAlO_3$ with a rhombohedral structure and $BaZrO_3$ with a cubic was observed when the sintering was conducted at $1500^{\circ}C$, indicating that the solubility of constituent elements was very low and a narrow solid solution region might exist. The large difference of ionic radii between $La^{3+}$ ion (0.136nm, C.N.=12) and $Ba^{2+}$ ion (0.161nm) or $Al^{3+}$ ion (0.0535nm, C.N.=6) and $Zr^{4+}$ ion (0.072nm) might hinder the mutual substitution. Within the compositions of x=0~0.7, the dielectric constant of the mixture increased with the amount of $BaZrO_3$, i.e., x value, which was in good agreement with the logarithmic mixing rule (In $_{r,i}={\Sigma}v_iln\;_{r,i}$). The increase in $BaZrO_3$ doping decreased $Q{\times}f$ value significantly due to the low $Q{\times}f$ value of $BaZrO_3$ itself, a poor microstructure of the mixture with an increased grain boundary area per volume, and defects in the cation and oxygen sub-lattices which were respectively caused by the evaporation of barium during the sintering process and the substitution of Ba on La-site or Al on Zr-site.

  • PDF

Characteristics of Nano-Sized, α-2ZrO2·P2O5 Powder Prepared by Polyvinyl Alcohol Solution Method (Polyvinyl Alcohol 용액법에 의해 제조된 나노크기 α-2ZrO2·P2O5 분말의 특성 연구)

  • Ma, Chung-Il;Lee, Sang-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.179-183
    • /
    • 2017
  • $2ZrO_2{\cdot}P_2O_5$ powder, which is not synthesized by solid reaction method, was successfully synthesized through PVA solution method. In this process, the firing temperature and the PVA content strongly affected the crystallization behavior and final particle size. A stable ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$ was synthesized at a firing temperature of $1200^{\circ}C$ and holding time of 4 h. ${\beta}$-phase $2ZrO_2{\cdot}P_2O_5$ was observed, with un-reacted $ZrO_2$ phases, for firing temperatures lower than $1200^{\circ}C$. In terms of the PVA content effect, the powder prepared with a PVA mixing ratio of 12:1 showed stable ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$; however, the ${\beta}$-phase was found to co-exist at relatively higher PVA content. The synthesized ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$ powder showed an average particle size of 100~250 nm and an average thermal expansion coefficient of $-2.5{\times}10^{-6}/^{\circ}C$ in the range of room temp. ${\sim}800^{\circ}C$.

Effect of $ZrO_2$Addition on the Microwave Dielectric Properties of BZN-SZN System Ceramics (BZN-SZN계 세라믹스의 마이크로파 유전 특성에 미치는 $ZrO_2$의 영향)

  • 윤석규;박우정;양우석;윤대호
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1042-1045
    • /
    • 2001
  • Microwave dielectric properties of Ba(Zn$_{1}$3/Nb$_{2}$3/) $O_3$-Sr(Zn$_{1}$3/Nb$_{2}$3/) $O_3$(BZN-SZN) system were investigated as a function of sintering temperature and Zr $O_2$content. Density was increased and the temperature coefficient of resonant frequency (TCF, $\tau$$_{f}$) decreased with increasing sintering temperature. However dielectric constant (K) and Q$\times$f value did not change markedly with the sintering temperature. For the samples sintered at the same temperature, density, dielectric constant, and Q$\times$f value were increased and TCF was decreased with increasing Zr $O_2$concentration. Especially, the dielectric constant of the sample increased with x and exhibited the maximum value ($\varepsilon$$_{r}$=41) when x=0.6 at 1575$^{\circ}C$ sintered. TCF decreased with x and exhibited the minimum value ($\tau$$_{f}$=+0.8ppm/$^{\circ}C$) when x=1.0..0.

  • PDF

Preparation and Characteristics of $Y_2O_3-CeO_2-ZrO_2$ Structural Ceramics : II. Mechanical Properties and Thermal Stability of Sintered Body ($Y_2O_3-CeO_2-ZrO_2$ 구조세라믹스의 제조 및 특성 : II. 소결체의 기계적 성질 및 열적 안정성)

  • 오혁상;이윤복;김영우;오기동;박홍채
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.102-108
    • /
    • 1997
  • ZrO2 powders stabilized with Y2O3 and CeO2 of various compositions were prepared by the coprecipitation of water-soluble ZrOCl2.8H2O, YCl3.6H2O and Ce(NO3)3.6H2O, and their compacts were pressurelessly sintered at 1400 and 150$0^{\circ}C$ for 2hrs in air. 2mol% Y2O3-ZrO3 showed the most superior strength (1003MPa) and microhardness (12.6GPa), while 10 mol%CeO2-ZrO2 had the hightest toughness (13.3 MPa.m1/2) after sintering at 140$0^{\circ}C$. The addition of Y2O3 into Y2O3-ZrO3 decreased mean grain size and increased strength and hardness but decrease toughness. On the other hand, the addition of CeO2 into Y2O3-ZrO2 enhanced the stability of tetragonal phase during low-temperature aging for a long time under hydrothermal atmosphere.

  • PDF

Characterization of Sulfonated Ploy(aryl ether sulfone) Membranes Impregnated with Sulfated $ZrO_2$ (Sulfated $ZrO_2$를 함침한 SPAES 연료전지막의 특성 평가)

  • Kim, Mi-Nai;Choi, Young-Woo;Kim, Tae-Young;Lee, Mi-Soon;Kim, Chang-Soo;Yang, Tae-Hyun;Nam, Ki-Seok
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Composite membranes based on sulfonated poly(aryl ether) sulfone (SPAES) with different sulfated zirconia nanoparticles ($s-ZrO_2$) ratio are synthesized and investigated for the improvement of the hydration and the proton conductivity at high temperature and no humidification for fuel cell applications. X-ray diffraction technique is employed to characterize the structure and the size of $s-ZrO_2$ nanoparticles. The sulfation effect of $s-ZrO_2$ nanoparticles is verified by FT-IR analysis. The properties of the SPAES composite membranes with the various $s-ZrO_2$ ratio are evaluated by ion exchange capacity and water content. The proton conductivities of the composite membranes are estimated at room temperature with full hydration and at the various high temperature without external humidification. The composite membrane with 5 wt% $s-ZrO_2$ shows the highest proton conductivity. The proton conductivities are $0.9292\;S\;cm^{-1}$ at room temperature with full hydration and $0.0018\;S\;cm^{-1}$ at $120^{\circ}C$ without external humidification, respectively.

High-Temperature Degradation of Hot-Pressed $t-ZrO_2$ Co-doped with $Y_2O_3$ and $Nb_2O_5$ (Hot-press법으로 제조된 $Y_2O_3$$Nb_2O_5$가 첨가된 정방정 ZrO2의 고온열화)

  • 이득용;김대준;조경식
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.9
    • /
    • pp.915-920
    • /
    • 1997
  • Tetragonal ZrO2 polycrystal (TZP), consisted of 90.24 mol% ZrO2-5.31 mol% Y2O3-4.45 mol% Nb2O5, were prepared using hot-press and mechanical properties and high-temperature degradation were investigated. The specimen, hot-pressed for 1 h at 140$0^{\circ}C$ in Ar atmosphere, exhibited flexural strength of 1010 MPa and fracture toughness of 7.5 MPam1/2 and experienced no low-temperature degradation below 40$0^{\circ}C$. However, as aged for 100h at temperatures higher than 40$0^{\circ}C$, TZP was suffered by high-temperature degradation due to an extensive cavitation caused by the oxidation of carbon. XPS observation revealed that the carbon incorporated in TZPs during hot-pressing exists as either an ether-type CO or a carbonyl-type C=O. Despite of the high-temperature degradation of t-ZrO2 co-doped with Y2O3 and Nb2O5, its flexural strength and fracture toughness were superior to those of the commercial 3 mol% Y2O3-TZP hot-pressed under the identical condition as determined before and after the aging treatments.

  • PDF

Microstructures and Recrystallization Behavior with Heat-Treatment Conditions of Pure Zr (열처리 조건의 변화에 따른 순수 Zr의 미세조직 및 재결정 거동)

  • Lim, Yoon-Soo;Wey, Myeong-Yong;Kim, Hyun-Gil;Choi, Yang-Jin;Jeong, Yong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.12 no.4
    • /
    • pp.287-293
    • /
    • 1999
  • Effect of heat-treatment on the microstructure and recrystallization behavior of pure Zr was studied. The specimens were prepared under the various annealing temperatures from $400^{\circ}C$ to $800^{\circ}C$ and times from 300 to 5000 minutes after vacuum arc remelting. The recrystallization behavior was observed by a polarized optical microscope, TEM and micro-vickers hardness tester. With increasing the annealing time, the temperature region of hardness drop moved to the lower temperature region due to the recovery and recrystallization behaviors at the lower temperature. The recrystallization of cold-worked pure Zr was completed between 450 and $600^{\circ}C$. The size of recrystallized grain increased at $700^{\circ}C$ for 600min. Activation energy(Q) of pure Zr measured by the time for constant fraction technique was 78 KJ/mol.

  • PDF

Dielectric Properties and Electro-Caloric Effects of Low Temperature Sintering Ba(Ti0.9Zr0.1)O3 Ceramics (저온에서 소결된 Ba(Ti0.9Zr0.1)O3 세라믹스의 유전 특성 및 전기 열량 효과)

  • Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.1
    • /
    • pp.13-16
    • /
    • 2017
  • In this study, in order to develop composition ceramics for refrigeration device application, $Ba(Ti_{0.9}Zr_{0.1})O_3$ composition was fabricated using conventional solid-state method. Electrocaloric effect of this ceramic was investigated using the characteristics of P-E hysteresis loops at wide temperature range from room temperature to $150^{\circ}C$. Curie temperature of $Ba(Ti_{0.9}Zr_{0.1})O_3$ ceramics showed $80^{\circ}C$. The maximum value of ${\Delta}T=0.12^{\circ}C$ in ambient temperature of $115^{\circ}C$ under 30 kV/cm was appeared. It is concluded that $Ba(Ti_{0.9}Zr_{0.1})O_3$ ceramics can be applied as refrigeration device application.

Super Hydrophilic Properties of ZrO2 Thin Film Containing TiO2 Photo-Catalysis (광촉매 TiO2 함유 ZrO2 박막의 초친수성)

  • Jung, Ki-Uk;Lee, Tea-Gu;Mun, Chong-Soo
    • Korean Journal of Materials Research
    • /
    • v.18 no.4
    • /
    • pp.211-217
    • /
    • 2008
  • A $ZrO_2$ coating solution containing $ZrO_2$ photo-catalysis, which is transparent in visible light, was prepared by the hydrolysis of alkoxide, and thin films on the $SiO_2$ glass substrate were formed in a dipcoating method. These thin films were heat-treated at temperatures ranging from $250^{\circ}C-800^{\circ}C$ and their characteristics were subjected to thermal analysis, XRD, spectrometry, SEM, EDS, contact angle measurement, and AFM. Tetragonal $ZrO_2$ phase was found in the thin film heat treated at $450^{\circ}C$, and anatase $TiO_2$ phase was detected in the thin film heat-treated at $600^{\circ}C$ and above. The thickness of the films was approximately 300 nm, and the roughness was 0.66 nm. Thus, the film properties are excellent. The films are super hydrophilic with a contact angle of $4.0^{\circ}$; moreover, they have self-cleaning effect due to the photo catalytic property of anatase $TiO_2$.