Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.4.179

Characteristics of Nano-Sized, α-2ZrO2·P2O5 Powder Prepared by Polyvinyl Alcohol Solution Method  

Ma, Chung-Il (Department of Advanced Materials Science and Engineering, Mokpo National University)
Lee, Sang-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University)
Publication Information
Korean Journal of Materials Research / v.27, no.4, 2017 , pp. 179-183 More about this Journal
Abstract
$2ZrO_2{\cdot}P_2O_5$ powder, which is not synthesized by solid reaction method, was successfully synthesized through PVA solution method. In this process, the firing temperature and the PVA content strongly affected the crystallization behavior and final particle size. A stable ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$ was synthesized at a firing temperature of $1200^{\circ}C$ and holding time of 4 h. ${\beta}$-phase $2ZrO_2{\cdot}P_2O_5$ was observed, with un-reacted $ZrO_2$ phases, for firing temperatures lower than $1200^{\circ}C$. In terms of the PVA content effect, the powder prepared with a PVA mixing ratio of 12:1 showed stable ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$; however, the ${\beta}$-phase was found to co-exist at relatively higher PVA content. The synthesized ${\alpha}$-phase $2ZrO_2{\cdot}P_2O_5$ powder showed an average particle size of 100~250 nm and an average thermal expansion coefficient of $-2.5{\times}10^{-6}/^{\circ}C$ in the range of room temp. ${\sim}800^{\circ}C$.
Keywords
$2ZrO_2{\cdot}P_2O_5$; negative thermal expansion; PVA solution method; crystallization; nano-size particle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. Yamai, T. Ota, Y. Kurita and S. Koishi, J. Ceram. Soc. Japan, 97, 447 (1989).   DOI
2 S. Udagawa and H. Ikawa, Bull. Ceram. Soc. Japan, 14, 967 (1979).
3 T. Isobe, T. Umezome, Y. Kameshima, A. Nakajima and K. Okada, Mater. Res. Bull., 44, 2045 (2009).   DOI
4 J. S. O. Evans, T. A. Mary and A. W. Sleight, J. Solid State Chem., 120, 101 (1995).   DOI
5 S. J. Lee and W. M. Kriven, J. Am. Ceram. Soc., 81, 2605 (1998).
6 S. J. Lee, E. A. Benson and W. M. Kriven, J. Mater. Res., 82, 2049 (1999).
7 M. H. Nguyen, S. J. Lee and W. M. Kriven, J. Mater. Res., 14, 3417 (1999).   DOI
8 D. A. Fumo, M. R. Morelli and A. M. Segadaes, Mater. Res. Bull., 31, 1243 (1996).   DOI
9 I. Nettleship, J. L. Shull and W. M. Kriven, J. Euro. Ceram. Soc., 11, 291 (1993).   DOI
10 Y. M. Han, S. J. Lee, Y. K. Kim and C. H. Jung, J. Nanosci. Nanotechnol., 16, 1672 (2016).   DOI
11 S. J. Lee and C. H. Jung, J. Nanosci. Nanotechnol., 12, 800 (2012).   DOI
12 I. Yamai and T. Oota, J. Am. Ceram. Soc., 68, 273 (1985).   DOI