Browse > Article

Characterization of Sulfonated Ploy(aryl ether sulfone) Membranes Impregnated with Sulfated $ZrO_2$  

Kim, Mi-Nai (Fuel Cell Research Center, Korea Institute of Energy Research)
Choi, Young-Woo (Fuel Cell Research Center, Korea Institute of Energy Research)
Kim, Tae-Young (Fuel Cell Research Center, Korea Institute of Energy Research)
Lee, Mi-Soon (Fuel Cell Research Center, Korea Institute of Energy Research)
Kim, Chang-Soo (Fuel Cell Research Center, Korea Institute of Energy Research)
Yang, Tae-Hyun (Fuel Cell Research Center, Korea Institute of Energy Research)
Nam, Ki-Seok (Specialized Graduate School of Hydrogen and Fuel Cells, Chonbuk National University)
Publication Information
Membrane Journal / v.21, no.1, 2011 , pp. 30-38 More about this Journal
Abstract
Composite membranes based on sulfonated poly(aryl ether) sulfone (SPAES) with different sulfated zirconia nanoparticles ($s-ZrO_2$) ratio are synthesized and investigated for the improvement of the hydration and the proton conductivity at high temperature and no humidification for fuel cell applications. X-ray diffraction technique is employed to characterize the structure and the size of $s-ZrO_2$ nanoparticles. The sulfation effect of $s-ZrO_2$ nanoparticles is verified by FT-IR analysis. The properties of the SPAES composite membranes with the various $s-ZrO_2$ ratio are evaluated by ion exchange capacity and water content. The proton conductivities of the composite membranes are estimated at room temperature with full hydration and at the various high temperature without external humidification. The composite membrane with 5 wt% $s-ZrO_2$ shows the highest proton conductivity. The proton conductivities are $0.9292\;S\;cm^{-1}$ at room temperature with full hydration and $0.0018\;S\;cm^{-1}$ at $120^{\circ}C$ without external humidification, respectively.
Keywords
high temperature fuel cell; sulfated zirconia; humidification; composite membrane;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 D. Lu, W. Lu,⁎C. Li, J. Liu, and J. Xu, "Proton conducting composite membranes derived from poly(2,6-dimethyl-1, 4-phenylene oxide) doped with phosphosilicate gels", Solid State Ionics, 177, 1111 (2006).   DOI   ScienceOn
2 S. L. Chena, A. B. Bocarsly, and J. Benziger, "Nafion layered sulfonated polysulfone fuel cell membranes", J. Power Sources, 152, 27 (2005).   DOI
3 S. L. Chen, L. Krishnan, S. Srinivasan, J. Benziger, and A. B. Bocarsly, "Ion exchange resin/polystyrene sulfonate composite membranes for PEM fuel cells", J. Membr. Sci., 243, 327 (2004).   DOI   ScienceOn
4 J. Jeong, K. Yoon, J. k. Choi, Y. J. Kim, and Y. T. Hong, "Preparation and Characterization of the $H_{3}PO_{4}$-doped Sulfonated Poly(aryl ether benzimidazole) Membrane for Polymer Electrolyte Membrane Fuel Cell", Membrane Journal, 16, 276 (2006).
5 M. C. Yoo, B. J. Chang, J. H. Kim, S. B. Lee, and Y. T. Lee, "Sulfonated Perfluorocycobutyl Biphenylene Polymer Electrolyte Membranes for Fuel Cells", Membrane Journal, 15, 355 (2005).
6 M. Rikukawa and K. Sanui, "Proton-conducting polymer electrolyte membranes based on hydrocarbon polymer", Prog. Polym. Sci., 25, 1463 (2000).   DOI   ScienceOn
7 Q. Guo, P. N. Pintauro, H. Tangb, and S. O'Connor, "Sulfonated and crosslinking polyphosphazenebased proton-exchange membranes", J. Membr. Sci., 154, 175 (1999)   DOI   ScienceOn
8 W. Essafi, G. Gebel, and R. Mercier, "Sulfonated polyimide ionomers: A structural study", Macromolecules, 37, 1431 (2004).   DOI   ScienceOn
9 R. Y. M. Huang, P. Shao, C. M. Burns, and X. Feng, "Sulfonation of poly(ether ether detone) (PEEK) : Kinetic study and characterization", J. Appl. Polym. Sci., 82, 2651 (2001).   DOI   ScienceOn
10 R. Souzy, B. Ameduri, B. Boutevin, G. Gebel, and P. Capron, "Functional fluoropolymers for fuel cell membranes", Solid State Ionics, 176, 2839 (2005).   DOI   ScienceOn
11 S. Hara and M. Miyayama, "Proton conductivity of superacidic sulfated zirconia", Solid State Ionics, 168, 111 (2004).   DOI
12 X. Li, K. Nagaoka, and J. A. Lercher, "Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures", J. Catal., 227, 130 (2004).   DOI   ScienceOn
13 V. Ramani, H. R. Kunz, and J. M. Fenton, "Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation", J. Membr. Sci., 232, 31 (2004).   DOI
14 S. Tominaka, T. Momma, B. Scrosati, and T. Osaka, "Sulfated zirconia as a proton conductor for fuel cells: Stability to hydrolysis and influence on catalysts", J. Power Sources, 195, 4065 (2010).   DOI   ScienceOn
15 B. S. Pivovar, Y. Wang, and E. L. Cussler, "Pervaporation membranes in direct methanol fuel cells", J. Membr. Sci., 154, 155 (1999).   DOI   ScienceOn
16 M. A. Navarra, F. Croce, and B. Scrosati, "New, high temperature superacid zirconia-doped NafionTM composite membranes", J. Mater. Chem., 17, 3210 (2007).   DOI   ScienceOn
17 H. S. Kim, S. U. Hong, W. S. Choi, and J. H. Kim, "Characterization of Carbon Composite Bipolar Plates for Polymer Electrolyte Membrane Fuel Cells", Membrane Journal, 15, 141 (2005).