• 제목/요약/키워드: Zr-based alloy

검색결과 160건 처리시간 0.02초

Anisotropic Mechanical Properties of Tantalum-Continuous-Fiber-Reinforced Zr-based Amorphous Matrix Composites Fabricated by Liquid Pressing Process (액상가압공정으로 제조된 탄탈륨 연속섬유 강화 Zr계 비정질 복합재료의 기계적 성질의 이방성)

  • Lee, Kyuhong;Lee, Sang-Bok;Lee, Sang-Kwan;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • 제47권9호
    • /
    • pp.542-549
    • /
    • 2009
  • Zr-based amorphous alloy matrix composites reinforced with tantalum continuous fibers were fabricated by the liquid pressing process, and their anisotropic mechanical properties were investigated by tensile and compressive tests of $0^{\circ}$(longitudinal)-, $45^{\circ}$-, and $90^{\circ}$(transverse)-orientation specimens. About 60 vol.% of tantalum fibers were homogeneously distributed inside the amorphous matrix, which contained a small amount of polygonal crystalline particles. The ductility of the tantalum-continuous-fiber-reinforced composite under tensile or compressive loading was dramatically improved over that of the monolithic amorphous alloy, while maintaining high strength. When the fiber direction was not matched with the loading direction, the reduction of the strength and ductility was not serious because of excellent fiber/matrix interfacial strength. Observation of the anisotropic deformation and fracture behavior showed the formation of multiple shear bands, the obstruction of crack propagation by fibers, and the deformation of fibers themselves, thereby resulting in tensile elongation of 3%~4% and compressive elongation of 15%~30%. These results suggest that the liquid pressing process was useful for the development of amorphous matrix composites with excellent ductility and anisotropic mechanical properties.

Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region (과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발)

  • 옥명렬;서진유;홍경태
    • Transactions of Materials Processing
    • /
    • 제13권1호
    • /
    • pp.9-14
    • /
    • 2004
  • Recently, various bulk metallic glasses (BMG's) having good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. By using the viscous flow, the very low pressure is needed to deform the materials. In this study, we investigated the structural transition and deformation behavior of Vitreloy 1 (Zr/sub 41.2/Ti/sub 13.8/Cu/sub 12.5/Ni/sub 10/Be/sub 22.5/) using TMA and DSC. We applied the results to the micro forming process. The forming condition was chosen based on the viscosity data from TMA, and Si wafer with micro patterns on the surface was used as a forming die. The deformed surface was analyzed by SEM and 3D Surface Profiling System. The alloy showed good replication of the patterns. Quantitative measurement of roughness was useful to evaluate the replication. Surface condition of the deformed surface was determined by the initial surface condition.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동 연구)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Hub, Hoon;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • 제18권6호
    • /
    • pp.500-507
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$(bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74GPa at strain rate $10^2s^{-1}$ and minimum strength was found to be 1.6GPa at $10^{-1}s^{-1}$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}s^{-1}$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

Plastic deformation behavior of BMG/crystalline composites in the supercooled liquid region during compression (BMG/결정질 복합재의 과냉각 액상구역에서 압축 변형 거동)

  • Park, E.S.;Lee, J.H.;Kim, S.H.;Huh, M.Y.;Kim, H.J.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.118-121
    • /
    • 2007
  • Bulk metallic glass (BMG)/crystalline composites comprising a copper based BMG alloy and crystalline nickel were produced by means of eloctroless plating of nickel on $Cu_{54}Zr_{22}Ti_{18}Ni_6$ BMG powder and subsequent consolidation using spark plasma sintering. The plastic deformation behavior of BMG/crystalline composites was examined by uniaxial compression test at various temperatures in the supercooled liquid region (SLR) of the BMG alloy. The evolution of strain states during uniaxial compression was tackled by microstructure observations. Deformation temperature played an important role in the deformation behavior of BMG/crystalline composites, which was attributed to a strong temperature dependence of the flow stress of the BMG alloy in the SLR. BMG/crystalline composites deformed homogenously in the temperature range where the flow stress of the BMG alloy was close to that of crystalline nickel. In contrast, inhomogeneous deformation was observed in the temperature range where the flow stress of the BMG alloy largely differs from that of crystalline nickel.

  • PDF

Micro Forming of Bulk Metallic Glass using the Deformation Behavior in the Supercooled Liquid Region (과냉각 액체 영역에서의 변형거동을 이용한 벌크 비정질 합금의 미세성형 기술 개발)

  • 홍경태;옥명렬;서진유
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.93-96
    • /
    • 2003
  • Recently, various bulk metallic glasses (BMG's) haying good mechanical and chemical properties were developed. BMG's can easily be deformed in the supercooled liquid region, via viscous flow mechanism. In our previous work, we evaluated the deformation behavior and some other basic properties of Z $r_{41.2}$ $Ti_{13.8}$C $u_{12.5}$N $i_{10}$B $e_{22.5}$ alloy. In this study, we investigated the micro forming of Z $r_{41.2}$ $Ti_{13.8}$C $u_{12.5}$N $i_{10}$B $e_{22.5}$ alloy. The process condition was chosen based on the viscosity data from TMA, and superalloy and Si wafer with micro patterns on the surface were used as forming die. The alloy showed good replication of the patterns. However, some stripe patterns, resembling scratches, appeared on the deformed alloy surface. These scratches can be reduced or eliminated by polishing before forming.ing.ore forming.ing.

  • PDF

Elevation of Properties of Al-Nb-Ar alloys Fabricated by Mechanical Alloying Metho (기계적합금화법을 이용한 고온 고강도 Al-Nb-Zr 합금 제조 및 특성 평가)

  • Kwon, Dae-Hwan;Ahn, In-Shup;Kim, Sang-Shik;Lee, Kwang-Min;Park, Min-Woo
    • Korean Journal of Materials Research
    • /
    • 제10권7호
    • /
    • pp.499-504
    • /
    • 2000
  • Recently there have been many investigations on the synthesis and properties of transition metal trialuminides based on Ti, Zr, V, Nb and Ta for use aircraft structure materials in an elevated environment. The effect of Zr additions on the formation behaviour of Al-Nb alloy was investigated. Al-1.3at.%(Nb+Zr) alloys with different Nb to Zr atomic 1:3, 1:1 and 3:1 were prepared by mechanical alloying(MA). The morphological changes and microstructural evolution of Al-Nb-Zr powders during MA were investigated by SEM, XRD and TEM. The intermetallic compound phase of $Nb_2Al\; and\; Al_3Zr_4$ was identified by X-ray diffraction. The intemetallic compound of $Al_3Zr,\; Al_3Nb$ and $Al_3Zr_4$ were formed by heat treatment for 1 hour at $500^{\circ}C$. The size of intermetallic compounds observed by TEM were approximately below 100nm, when they were heat treated after mechanically alloying for 30 hours.

  • PDF

Deformation behavior in Cu-based bulk amorphous alloys composite during compression (동기지 동계 Bulk Amorphous 복합재의 압축 변형거동)

  • Lee C. H.;Kim J. S.;Park E. S.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.203-206
    • /
    • 2004
  • Copper-based bulk amorphous alloy composite was synthesized by using the copper-coated $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ amorphous powder which was obtained by argon gas atomization. The amorphous powder having a super-cooled liquid region of 53 K was coated by crystalline copper by electroless coating. The consolidation was carried out by manufacturing performs and by the subsequent warm extrusion at 743 K. During the compression test at the room temperature, the composite containing a large fraction of crystalline copper displayed a larger plastic strain after yielding. FEM simulation revealed change in fracture modes in the composites depending on the amount of crystalline copper in the composites.

  • PDF

Low Temperature Diffusion Brazing of Commercial Pure(CP)-Ti alloy with Zr-based Filler Metal (Zr기 필러메탈을 이용한 상용 순 티타늄(CP-Ti) 합금의 저온 브레이징 특성)

  • Sun, J.H.;Shin, S.Y.;Hong, J.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • 제29권1호
    • /
    • pp.1-7
    • /
    • 2016
  • Titanium and its alloys can be usually joined with brazing method. And the alloys should be brazed at low temperature to keep their original microstructure. In this study, the mechanical strength and microstructure of the CP-Ti joint-brazed with $Zr_{54}Ti_{22}Ni_{16}Cu_8$ filler metal having melting temperature of $774{\sim}783^{\circ}C$ were investigated. The tensile strengths of the joint-brazed at $800^{\circ}C$ with $100^{\circ}C/min$ of cooling rate showed more than 400 MPa which was as high as base metal. The $Widmanst{\ddot{a}}tten$ structure consisting of Ti and $Ti_2Ni$ phase was observed in the joint area. However, the tensile strengths of the joint-brazed at $800^{\circ}C$ with $15^{\circ}C/min$ of cooling rate were decreased and the Ti, $(Ti,Zr)_2Ni$ and $Ti_2Ni$ phases were observed at the joint area. It is believed that the $(Ti,Zr)_2Ni$ laves phases could decrease the mechanical strength of the joint and the cooling rate should be controled to get high strength of the titanium joint.

Thermal stability, magnetic and magnetocaloric properties of Gd55Co35M10 (M = Si, Zr and Nb) melt-spun ribbons

  • Jiao, D.L.;Zhong, X.C.;Zhang, H.;Qiu, W.Q.;Liu, Z.W.;Ramanujan, R.V.
    • Current Applied Physics
    • /
    • 제18권12호
    • /
    • pp.1523-1527
    • /
    • 2018
  • The thermal stability, magnetic and magnetocaloric properties of $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) melts-pun ribbons were studied. The relatively high reduced glass transition temperature ($T_{x1}/T_m$ > 0.60) and low melting point ($T_m$) resulted in excellent glass forming ability (GFA). The Curie temperatures ($T_C$) of melt-spun amorphous ribbons $Gd_{55}Co_{35}M_{10}$ for M = Si, Zr and Nb were 166, 148 and 173 K, respectively. For a magnetic field change of 2 T, the values of maximum magnetic entropy change $(-{\Delta}S_M)^{max}$ for $Gd_{55}Co_{35}Si_{10}$, $Gd_{55}Co_{35}Zr_{10}$ and $Gd_{55}Co_{35}Nb_{10}$ were found to be 2.86, 4.28 and $4.05J\;kg^{-1}K^{-1}$, while the refrigeration capacity (RC) values were 154, 274 and $174J\;kg^{-1}$, respectively. The $RC_{FWHM}$ values of amorphous alloys $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) are comparable to or larger than that of $LaFe_{11.6}Si_{1.4}$ crystalline alloy. Large values of $(-{\Delta}S_M)^{max}$ and RC along with good thermal stability make $Gd_{55}Co_{35}M_{10}$ (M = Si, Zr and Nb) amorphous alloys be potential materials for magnetic cooling operating in a wide temperature range from 150 to 175 K, e.g., as part of a gas liquefaction process.

Synthesis of Ni-based Metallic Glass Composite Fabricated by Spark Plasma Sintering (방전플라즈마소결을 이용한 Ni계 비정질 복합재의 제조)

  • Kim, Song Yi;Guem, Bo Kyeong;Lee, Min Ha;Kim, Bum Sung
    • Journal of Powder Materials
    • /
    • 제20권1호
    • /
    • pp.33-36
    • /
    • 2013
  • A bulk metallic glass-forming alloy, $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders was used for good commercial availability and good formability in supercooled liquid region. In this study, the Ni-based metallic glass was synthesized using by high pressure gas atomized metallic glass powders. In order to create a bulk metallic glass sample, the $Ni_{59}Zr_{20}Ti_{16}Si_2Sn_3$ metallic glass powders with ball-milled Ni-based amorphous powder with 40%vol brass powder and Cu powder for 20 hours. The composite specimens were prepared by Spark Plasma Sintering for the precursor. The SPS was performed at supercooled liquid region of Ni-based metallic glass. The amorphous structure of the final sample was characterized by SEM, X-ray diffraction and DSC analysis.