• Title/Summary/Keyword: Zr Alloys

Search Result 422, Processing Time 0.029 seconds

Friction and Wear at Ceramic Coated Surfaces of Aluminum Alloy (알루미늄 합금표면에 코팅된 세라믹재의 마찰마멸 특성)

  • 공호성;권오관;김형선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3083-3093
    • /
    • 1993
  • Friction and wear at ceramic coated surfaces of aluminum alloy were experimentally studied using a Ring-on-Block wear test machine. Ceramic materials coated on aluminum alloy surfaces were WC, CrC, $Al_{2}O_{3}$ by a plasma spray; and $Al_{2}O_{3}$,$Al_{2}SiO_{5}$, $Na_{2}B_{4}O_{7}$,$Na_{4}P_{2}O_{7}$, and $Al_{2}O_{3}-ZrO_{2}$ composite coating by an Anodic Spark Depositon. They were tested under the sliding wet contact and compared with aluminum alloys and steels. Test results showed that ceramic coated surfaces, in general, have better anti-wear property than those of aluminum alloys due to increase in the surface hardness ; however, they also showed higher coefficients of friction and changes in wear mechanisms, resulting in brittle fractures.

Powder Metallurgy of Nanostructured High Strength Materials

  • Eckert, J.;Scudino, S.;Yu, P.;Duhamel, C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.364-365
    • /
    • 2006
  • Nanostructured or partially amorphous Al-and Zr-based alloys are attractive candidates for advanced high-strength lightweight materials. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This work focuses on mechanically attrited powders and their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases.

  • PDF

Toward Improving the Dynamic Deformation Properties of Metallic Materials via Role of Microstructure Factor (미세조직 인자의 영향을 고려한 금속 소재의 동적변형 특성 향상에 관한 연구)

  • Kim, Y.G.;Hwang, B.;Lee, D.G.;Ko, Y.G.;Lee, S.
    • Transactions of Materials Processing
    • /
    • v.30 no.5
    • /
    • pp.247-254
    • /
    • 2021
  • This study reviews dynamic deformation behavior of ultra-fine-grained Al alloys, ultra-fine-grained conventional low carbon steel and dual phase steel and Zr-based amorphous alloys. Dynamic tests were conducted using a Kolsky bar then the test data was analyzed in relation to resultant microstructures, mechanical properties and propensity of adiabatic shear band. In addition, deformed microstructures and fracture surfaces were used to investigate the behavior of both the dynamic deformation and fracture, and adiabatic shear banding. As a result, increasing microstructural homogeneity, strain hardenability and forming multiple shear bands could be a better way to increase the fracture resistance under dynamic loading as the formation of adiabatic shear bands was reduced or prevented.

Protective Coatings for Accident Tolerant Fuel Claddings - A Review

  • Rofida Hamad Khlifa;Nicolay N. Nikitenkov
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.115-147
    • /
    • 2023
  • The Fukushima accident in 2011 revealed some major flaws in traditional nuclear fuel materials under accidental conditions. Thus, the focus of research has shifted toward "accident tolerant fuel" (ATF). The aim of this approach is to develop fuel material solutions that lead to improved reactor safety. The application of protective coatings on the surface of nuclear fuel cladding has been proposed as a near-term solution within the ATF framework. Many coating materials are being developed and evaluated. In this article, an overview of different zirconium-based alloys currently in use in the nuclear industry is provided, and their performances in normal and accidental conditions are discussed. Coating materials proposed by different institutions and organizations, their performances under different conditions simulating nuclear reactor environments are reviewed. The strengths and weaknesses of these coatings are highlighted, and the challenges addressed by different studies are summarized, providing a basis for future research. Finally, technologies and methods used to synthesize thin-film coatings are outlined.

Effects of Minor Alloying Elements on the Mechanical Properties and Formability of Mg-3%Zn-0.5%Sn Base Sheet Alloys (Mg-3%Zn-0.5%Sn계 판재합금의 기계적 성질과 성형성에 미치는 미량합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • A variety of minor alloying elements such as Zr, Sr, Y, and Gd were added to Mg-3%Zn-0.5%Sn base alloy to form various fine precipitates and their effects on the microstructure, tensile properties, and sheet metal formability were investigated. Various very fine precipitates along with fine second phases were observed by the additions. It was found that Zr or Gd additive has a role to suppress the grain coarsening of alloy sheets during the hot working process. The Zr-added alloy showed the highest tensile elongation at $250^{\circ}C$ whereas the Gd-added alloy exhibited the best sheet metal forming characteristics in terms of CCV (conical cup value) and spring-back tendency.

The effect of substitution elements(Co, Cr, Fe) on the properties of Zr-based hydrogen storage alloy electrode for Ni-MH secondary battery (Ni-MH 2차 전지용 Zr계 수소저장합금전극의 특성에 미치는 치환원소(Co, Cr, Fe)의 영향)

  • Choi, Seung-Jun;Jung, So-Yi;Seo, Chan-Yeol;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.3
    • /
    • pp.185-189
    • /
    • 1999
  • Effects of alloy modification with the $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.4}$ alloy for an electrode use have been investigated. For the alloy composition, a part of Mn was substituted by Co, Cr and Fe. The experimental results showed that Co accelerated activation of alloy, and Fe and Cr improved the discharge capacity. These results agree with P-C-T curves of each alloy. But substituting Fe for Mn showed the decrease of the discharge capacity when discharged at high rate (60mA, about 1C rate). Considering both the discharge capacity and the high rate discharge property, $Zr_{0.6}Ti_{0.4}V_{0.4}Ni_{1.2}Mn_{0.3}Cr_{0.1}$ alloy was found to be the best alloy among the alloys subjected to the test.

  • PDF

Effects of Ball Milling on the Hydrogen Sorption Properties of Zr57V36Fe7 Getter Alloy (Zr57V36Fe7게터합금의 수소흡수특성에 미치는 분쇄의 영향)

  • Park, Je-Shin;Suh, Chang-Youl;Shim, Gun-Choo;Kim, Won-Baek
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.116-122
    • /
    • 2006
  • The effects of milling time in argon and hydrogen atmospheres on the hydrogen sorption speed of a getter alloy, $Zr_{57}V_{36}Fe_{7}$, was studied. The hydrogen sorption speed of milled alloys was evaluated at room temperature. In argon, as the oxygen content increased with milling time, the hydrogen sorption speed decreased accordingly. In hydrogen, on the other hand, the oxygen content decreased at first with milling time but started increasing after 5 hrs of milling time. Similar to the case of argon, however, the hydrogen sorption speed changed exactly in the opposite direction with the oxygen content, exhibiting the maximum rate at 5 hrs. These results suggest that in both atmospheres the hydrogen sorption speeds are inversely related with the oxygen contents.

The Study on the Preparation of Partially Stabilized Zirconia from Domestic Zircon Sand and its Application : II. The Fabrication of Sintered PSZ and its Properties (국산 지르콘사를 이용한 부분 안정화 지르코니아의 제조 및 그 응용에 관한 연구 : II. 부분 안정화 지르코니아 소결체의 제조 및 그 특성)

  • Kim, H.;Sunwoo, S.;Kang, J.B.;Shim, K.S.;Shin, K.C.;Hwang, K.H.
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.2
    • /
    • pp.131-135
    • /
    • 1988
  • The microstructural changes in partially stabilized MgO-ZrO2 alloys during heat treatment and mechanical properties of ZrO2(Y2O3)/Al2O3 systems have been studied. 9mol% MgO-ZrO2 powders were sintered at 1800$^{\circ}C$ for 4 hours and these specimens were aged at 1420$^{\circ}C$ and 1100$^{\circ}C$ secondly. These specimens have high thermal shock resistance and high toughness. The bend strength of Y-PSZ/Al2O3 composites conventially sintered were increased by HIP from 650MPa to 980MPa.

  • PDF

Effect of Boron Additions on Glass Formation and Magnetic Properties of Fe-Co-Ti-Zr-B Amorphous Ribbons

  • Kim, Sumin;Han, Bo Kyeong;Choi-Yim, Haein
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.164-167
    • /
    • 2016
  • The effect of the B additions on glass formation and magnetic properties is reported for the $Fe_{(87-x-y)}Co_yTi_7Zr_6B_x$ (x = 2, 4, 6 and y = 35, 40) alloy system. The ribbon samples with the width of 2 mm for each composition were prepared by the melt spinning technique; furthermore, their phase information was obtained from X-ray diffraction. Glass formation and magnetic properties were measured using differential scanning calorimetry and vibrating sample magnetometer respectively. The $Fe_{45}Co_{40}Ti_7Zr_6B_2$ (x = 2 and y = 40) system has the nanocrystalline phase identified as ${\alpha}-Fe$, as well as the amorphous phase, whereas all other alloys are fully amorphous. It is associated with the role of B on the glass formation. The widest supercooled liquid region is obtained as 71 K at x = 4 (both y = 35 and 40). The saturation magnetization decreases with the increase of the amount of the B addition, and the highest value is 1.59 T as x = 2 and y = 35 for this alloy system.

Effect of the Compositional Modulation on the Plasticity of Amorphous Alloys: Shear Localization Viewpoint Interpretation (비정질 합금의 조성분리가 소성에 미치는 영향: 변형국부화 관점에서의 해석)

  • Lee, Mi-Rim;Park, Kyoung-Won;Sa, Hyun-Je;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.11
    • /
    • pp.687-693
    • /
    • 2009
  • Experiments have demonstrated that a moderate amount of Be added to $Zr_{57.5}Cu_{38.3}Al_{4.2}$ amorphous alloy enhances the plasticity of the alloy. In particular, $Zr_{54}Cu_{36}Al_{4}Be_{6}$ alloy exhibited 19% of strain to fracture along with a strength exceeding 2 GPa. Energy dispersive x-ray spectroscopy conducted on the $Zr_{54}Cu_{36}Al_{4}Be_{6}$ alloy exhibited the presence of compositional modulation, indicating that nm-scale phase separation had occurred at local regions. In this study, the role played by the nm-scale phase separation on the plasticity was investigated in terms of structural disordering, structural softening and shear localization in order to better understand the structural origin of the enhanced plasticity shown by the developed alloy.