• Title/Summary/Keyword: Zoospore

Search Result 60, Processing Time 0.036 seconds

Ecology of Ginger Rhizome Rot Development Caused by Pythium myriotylum (Pythium myriotyrum에 의한 생강뿌리썩음병의 발생상태)

  • Kim, Choong-Hoe;Yang, Sung-Seok;Hahn, Ki-Don
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.184-190
    • /
    • 1997
  • Lesion enlargement of ginger rhizome rot was most rapid at 35~40 C, but delayed greatly as temperature decreased. Time needed for a killing a ginger plant, 22~25 cm long, was about 5 days at 35~40 C, but was 15 days at 15 C in a growth chamber test. Higher RH above 90%, higher soil moisture level above 80% of maximum soil moisture capacity, and deeper planting below 4cm enhanced the lesion development on ginger stems and rhizomes. Pythium myriotylum existed in field soil as forms of hyphal portion, hyphal swelling body, or oospore- or zoospore-like bodies, and served as the origin of its colonization. Inocula of P. myriotylum was randomly distributed in soil surface around ginger plants, but its density was decreased as increasing soil depth with the highest density at 0~10 cm soil depth. Population density of P. myriotylum did not vary significantly between the rhizoplane and the rhizosphere soil of a ginger plant, but differed greatly between the disessed and healthy plants with several to several hundreds times higher population in the diseased plants. A positive curvilinear relationship was found between P. myriotylum density and ginger rhizome rot severity.

  • PDF

Comparative Laboratory Culture Studies of the Native Kelp Kjellmaniella crassifolia and the Introduced Kelp Laminaria japonica in East Coast of Korea (동해안 토속종 개다시마(Kjelimaniella crassifolia)와 이식종 다시마(Laminaria japonica)의 실내배양 연구)

  • Kim, Hyung-Geun;Park, Joong-Goo;Kim, Dong-Sam
    • Journal of Aquaculture
    • /
    • v.18 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • Laboratory culture of the native kelp Kjelimaniella crassifolia and the introduced species Laminaria japonica in east coast of Korea were compared at each stage of their life cycles. In the zoospore stage, L. japonica grows optimally at a water temperature of $15{\~}20^{\circ}C$ achieving $95\%$ spore release in 24 hours, whereas K. crassifolia requires 48 hours to achieve $90\%$ spore release in these conditions. Good growth of gametophytes occurred at $10^{\circ}C$ and $15^{\circ}C$ in both species. L. japonica grows optimally under high light intensity ($80{\~}120{\mu}mol{\cdot}m^{-2}s^{-1}$) while K. crassifolia grows best under low light intensity ($40{\~}60{\mu}mol{\cdot}m^{-2}s^{-1}$). Growth of juvenile sporophytes of L. japonica was good in various water temperatures ($10{\~}20^{\circ}C$) and light levels ($40{\~}120{\mu}mol{\cdot}m^{-2}s^{-1}$) while K. crassifolia grew to optimal blade length only under specific conditions ($10{\~}40{\mu}mol{\cdot}m^{-2}s^{-1}$). While the optimal culture conditions for K. crassifolia were more constrained than those of L. japonica which tolerated a wide range of water temperatures and light intensities, the laboratory culture conditions for both of these species reflect the natural environment in which these species are found.

Evaluation of Early Generations of Crosses for Incorporation of Resistance to Phytophthora Blight into Sweet Pepper (감미종(甘味種)고추에 역병저항성(疫病抵抗性)을 도입(導入)하기 위한 교잡(交雜) 초기세대(初期世代) 검정(檢定))

  • Jeong, Ho Jeong;Kim, Byung Soo;Shon, Eun Young
    • Current Research on Agriculture and Life Sciences
    • /
    • v.12
    • /
    • pp.29-34
    • /
    • 1994
  • A leading sweet pepper cultivar, Keystone Resistant Giant #3, was crossed with a line with resistance to Phytophthora capsici, PI201232, for incorporation of the resistance and to study the inheritance of resistance to the disease. Seedlings of parents, $F_1$, $F_2$ and backcross populations of a cross between Keystone Resistant Giant #3 and PI201232 were inoculated with zoospore suspension of P. capsici at 36 days after seeding. Most of the $F_1$ seedlings survied the inoculation and this suggested that resistance is dominant over susceptibility. The number of survived plants in $F_2$ population was, however, much less than the killed. All the plants in a backcross to Keystone Resistant Giant #3 were killed. Therefore, the observed numbers did not fit the expected ratio for segregation of one or two dominant alleles as previously reported. The resistance to P. capsici appeared to be inherited in a quantitative mode in evaluation of root rot. Resistant individuals in $F_2$ population were selected and a breeding program for incorporation of the resistance to P. capsici by backcross method is continued.

  • PDF

Biocontrol Activity of Myxococcus sp. KYC 1126 against Phytophthora Blight on Hot Pepper (점액세균 Myxococcus sp. KYC 1126을 이용한 고추 역병 생물학적 방제 효능)

  • Kim, Sung-Taek;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.121-128
    • /
    • 2011
  • Bacteriolytic myxobacteria have been known to secrete various antifungal metabolites against several soilborne phytopathogens including Phytophthora. Among the three isolates of Myxococcus spp., KYC 1126 and KYC 1136 perfectly inhibited the mycelial growth of Phytophtora capsici in vitro. In order to show the biocontrol activity on Phytophthora blight of hot pepper, we tried to find the best way of application of a myxobacterial isolate. Although KYC 1126 fruiting body was easily grown on the colony of Escherichia coli as a nutrient source, it did not control the disease when it was pre-applied in soil. Before the bioassay of a liquid culture filtrate of KYC 1126 was conducted, its antifungal activity was confirmed on the seedlings applying with the mixture of the pathogen's zoospore suspension and KYC 1126 filtrate. On greenhouse experiments with five and four replications, the control value of KYC 1126 on phyllosphere and rhizosphere was 88% and 36%, respectively. Whereas, the control value of dimetnomorph+propineb on phyllosphere was 100% and that of propamorcarb on rhizosphere was 44%. There was a phytotoxicity of the myxobacterial filtrate when seedlings were washed and soaked for 24 hours. Gummy materials were covered with roots. And stem and petiole were constricted, then a whole seedling was eventually blighted.

Identification of the Oligotrophic Bacteria Strain 7F Biocontrolling Phytophthora Blight Disease of Red-pepper (고추 역병 방제를 위한 저영양 길항세균 7F 균주의 동정)

  • Kim, Dong-Gwan;Yeo, Yun-Soo;Kwon, Soon-Wo;Jang, Kil-Su;Lee, Chang-Muk;Lee, Mi-Hye;Kim, Soo-Jin;Koo, Bon-Sung;Yoon, Sang-Hong
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2010
  • A total of 10,753 oligotrophic bacteria were isolated from the cultivated soils of red-pepper infected by Phytophthora blight disease in various regions of Korea (Chungju, Anmyon, Taean, Andong, Eumsung and Goesan). Seven bacteria isolates among these collected resources were selected by the first screening of in vitro antagonistic assay against major several plant pathogenic fungi including Phytophthora capsici. Finally, strain 7F was selected by pot assay for a possible biological control agent against Phytophthora blight disease of pepper seedling in the greenhouse. Strain 7F was identified as Bacillus subtilis on the basis of its 16S rDNA sequence analysis and as standardized biochemical characteristics assay kits such as API20 NE. In the experiment of P. capsici zoospore infected red-pepper on the pot test, infection rate of red-pepper with nonetreatment to Phytophthora blight disease was 87%, while the rate was only 6% in the pot treated with strain 7F. This result indicated that the Bacillus subtilis strain 7F will be useful as a potential biocontrol agent for Phytophthora blight disease of red-pepper.

Comparison of the Influence of Carbon Substrates on the Fibrolytic Activities of Neocallimastix sp. NLRI-3 (탄소원의 종류가 반추위 혐기 곰팡이 Neocallimastix sp. NLRI-3의 섬유소 분해효소 활력에 미치는 영향 비교)

  • 손호진;송재용;최낙진;하종규;장종수
    • Journal of Animal Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.415-424
    • /
    • 2006
  • The purpose of this study was to investigate the fungal growth and enzyme production under different carbohydrate substrate conditions. The anaerobic fungus Neocallimastix sp. NLRI-3 isolated from the rumen of Korean native goat was incubated with different carbohydrate media containing 0.2% of glucose, starch, rice straw, filter paper, carboxymethyl cellulose(CMC), Sigmacell cellulose, xylan or xylose, respectively. The culture head gas production was the highest in the culture of filter paper medium, and the lowest in the culture of CMC medium at 96h incubation (P<0.05). The fungal zoospore production reached peak at 72h incubation, and its number was the highest in rice straw medium among the treatments (P<0.05). At 96h incubation, carboxymethyl cellulase(CMCase) activity was the highest in the culture of filter paper medium and the lowest in the culture of starch medium (P<0.05). While xylanase activity was the highest in the culture of rice straw medium and the lowest in the culture of xylose medium(P<0.05) at 72h incubation. There were no differences in culture supernatant protein expression among the treatments. However, the patterns of enzyme expression were different among the treatments with zymogram analysis. Six CMCases and 4 xylanase were detected from the results of zymogram analysis. Therefore the present study indicating that the fungal enzyme expression could be stimulated with insoluble substrates in the culture medium.

Suppression Effect of Gray Mold and Late Blight on Tomato Plants by Rhamnolipid B (Rhamnolipid B에 의한 토마토 잿빛곰팡이병과 역병의 억제효과)

  • Ahn, Ji-Ye;Park, Myung-Soo;Kim, Seul-Ki;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Choi, Jae-Eul;Kim, In-Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.15 no.3
    • /
    • pp.222-229
    • /
    • 2009
  • A Pseudomonas strain SG3 producing biosurfactant and showing antifungal and insecticidal activities was isolated from agricultural soil severely contaminated with machine oils. The antagonistic bacterium inhibited mycelial growth of all of the tested fungal pathogens. The fermentation broth of SG3 also effectively suppressed the development of various plant diseases including rice blast, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose. An antifungal substance was isolated from the fermentation broth of SG3 by ethyl acetate partitioning, silica gel column chromatography and preparative HPLC under the guide of bioassay. The chemical structure of the antifungal substance was determined to be rhamnolipid B by mass and NMR spectral analyses. The antifungal biosurfactant showed a potent in vivo antifungal activity against gray mold and late blight on tomato plants. In addition, rhamnolipid B inhibited mycelial growth of B. cinerea causing tomato gray mold and zoospore germination and mycelial growth of P. infestans causing tomato late blight. Pseudomonas sp. SG3 producing rhamnolipid B could be used as a new biocontrol agent for the control of plant diseases occurring on tomato plants.

Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium. (다기능 PGPR균주 Bacillus licheniformis K11이 생산하는 항진균성 Siderophore의 정제와 특성)

  • Woo, Sang-Min;Woo, Jae-Uk;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 2007
  • Previously, we isolated plant growth promoting rhizobacterium (PGPR) Bacillus licheniformis K11 which could produce auxin, cellulase and siderophore. The siderophore of B. licheniformis K11 $(siderophore_{K11})$ was determined to be a catechol type siderophore which is produced generally by Bacillus spp. B. licheniformis K11 could produce the siderophore most highly after 96 h of incubation under nutrient broth at $20^{\circ}C$ with initial pH 9.0. For the production of the $siderophore_{K11}$, trehalose and $NH_4Cl$ were the best carbon and nitrogen sources in Davis minimal medium, respectively. The $siderophore_{K11}$ was Produced in M9 medium (pH 9.0) after 4 days at $20^{\circ}C$, and purified from culture broth of B. licheniformis K11 by using Amberlite XAD-2, Sephadex LH-20 column chromatography, and reversed-phase HPLC. The $siderophore_{K11}$ had the biocontrol activity against spore germination of P. capsici and F. oxysporum on potato dextrose agar (PDA). The results indicate that the $siderophore_{K11}$ is an antifungal mechanism of B. licheniformis K11 against phytopathogenic fungi.

A Duplex PCR for Detection of Phytophthora katsurae Causing Chestnut Ink Disease (밤나무 잉크병균, Phytophthora katsurae의 검출을 위한 Duplex PCR)

  • Lee, Dong-Hyeon;Lee, Sun-Keun;Kim, Hye-Jeong;Lee, Sang-Hyun;Lee, Sang-Yong;Lee, Jong-Kyu
    • Research in Plant Disease
    • /
    • v.18 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • Phytophthora katsurae is a fungal pathogen responsible for chestnut ink disease. We designed two duplex primer sets (SOPC 1F/1R+KatI 3F/5R, SOPC 1-1F/1-1R+KatI 3F/5R) to detect P. katsurae. SOPC 1F/1R and SOPC 1-1F/1-1R primer pairs were designed for sequence characteristic amplification regions (SCAR) marker, and KatI 3F/5R primer pair was used for P. katsurae-specific primer designed from internal transcribed spacer (ITS) region. To assess the sensitivity of duplex PCR, genomic DNA was serially diluted 10-fold to make the final concentrations from 1 mg/ml to 1 ng/ml. The sensitivity for two primer sets were 1 ${\mu}g/ml$ and 100 ng/ml, respectively. To find detection limits for zoospores of P. katsurae, each zoospore suspension was serially diluted 10-fold to make the final concentrations from $1{\times}10^6$ to $1{\times}10^2$ cells/ml, and then DNA was extracted. The limits of detection for all of two primer sets were $1{\times}10^5$ cells/ml. All of two primer sets were specific to P. katsurae in PCR detection and did not produce any P. katsurae-specific PCR amplicons from other 16 Phytophthora species used as the control. This study shows that duplex PCR using two primer sets might be a useful tool for rapid and efficient detection of P. katsurae.

Control Efficacy of Carboxylic Acid Amide Fungicides against Pepper Phytophthora Blight Causing Phytophthora capsici (고추 역병에 대한 Carboxylic Acid Amide계 살균제의 방제 효과)

  • Shin, Jin-Ho;Kim, Jooh-Young;Kim, Hyeong-Jo;Choi, Young-Ki;Kim, A-Hyeong;Lee, Kyeong-Hee;Rho, Chang-Woo;Kim, Heung-Tae
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.463-472
    • /
    • 2010
  • It was conducted to investigate the control efficacy of carboxylic acid amide (CAA) fungicides, such as benthiavalicarb, iprovalicarb, dimethomorph and mandipropamid, against pepper Phytophthora blight caused by P. capsid in the laboratory and the field. The fungicides inhibited mycelial growth and direct sporangium germination of P. capsid strongly, while there was no activity of all fungicides against zoospore release from sporangium. In greenhouse test, they showed the good protective and curative effect against pepper Phytophthora blight. Benthiavalicarb applied at $100{\mu}g\;mL^{-1}$ 7 days before inoculation prevented pepper Phytophthora blight by 100%, even though the zoosporangiurn suspension of P. capsid adjusted to not only $5{\times}10^3$ zoosporangia $mL^{-1}$ but also $1{\times}10^5$ zoosporangia $mL^{-1}$ was inoculated by soil-drenching. Except for dimethomorph, the other fungicides showed an excellent control activity over 2 years from 2009 to 2010 in the field test. The control value of dimethomorph applied at $250{\mu}g\;mL^{-1}$ was low, 27.2% in 2009, but that of dimethomorph applied even at $125{\mu}g\;mL^{-1}$ was high, 89.5% in 2010. All the fungicides showed good inhibitory effect on the mycelial growth and the direct germination of zoosporangiurn, and controlled pepper Phytophthora blight preventively and curatively, can be used to establish the spray system for control1ing the pepper disease.