• Title/Summary/Keyword: Zoonotic viruses

Search Result 16, Processing Time 0.023 seconds

Identification of Differentially Expressed Genes in Ducks in Response to Avian Influenza A Virus Infections

  • Ndimukaga, Marc;Won, Kyunghye;Truong, Anh Duc;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Avian influenza (AI) viruses are highly contagious viruses that infect many bird species and are zoonotic. Ducks are resistant to the deadly and highly pathogenic avian influenza virus (HPAIV) and remain asymptomatic to the low pathogenic avian influenza virus (LPAIV). In this study, we identified common differentially expressed genes (DEGs) after a reanalysis of previous transcriptomic data for the HPAIV and LPAIV infected duck lung cells. Microarray datasets from a previous study were reanalyzed to identify common target genes from DEGs and their biological functions. A total of 731 and 439 DEGs were identified in HPAIV- and LPAIV-infected duck lung cells, respectively. Of these, 227 genes were common to cells infected with both viruses, in which 193 genes were upregulated and 34 genes were downregulated. Functional annotation of common DEGs revealed that translation related gene ontology (GO) terms were enriched, including ribosome, protein metabolism, and gene expression. REACTOME analyses also identified pathways for protein and RNA metabolism as well as for tissue repair, including collagen biosynthesis and modification, suggesting that AIVs may evade the host defense system by suppressing host translation machinery or may be suppressed before being exported to the cytosol for translation. AIV infection also increased collagen synthesis, showing that tissue lesions by virus infection may be mediated by this pathway. Further studies should focus on these genes to clarify their roles in AIV pathogenesis and their possible use in AIV therapeutics.

Coronaviruses: SARS, MERS and COVID-19 (코로나바이러스: 사스, 메르스 그리고 코비드-19)

  • Kim, Eun-Joong;Lee, Dongsup
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.4
    • /
    • pp.297-309
    • /
    • 2020
  • Coronaviruses were originally discovered as enzootic infections that limited to their natural animal hosts, but some strains have since crossed the animal-human species barrier and progressed to establish zoonotic diseases. Accordingly, cross-species barrier jumps resulted in the appearance of SARS-CoV, MERS-CoV, and SARS-CoV-2 that manifest as virulent human viruses. Coronaviruses contain four main structural proteins: spike, membrane, envelope, and nucleocapsid protein. The replication cycle is as follows: cell entry, genome translation, replication, assembly, and release. They were not considered highly pathogenic to humans until the outbreaks of SARS-CoV in 2002 in Guangdong province, China. The consequent outbreak of SARS in 2002 led to an epidemic with 8,422 cases, and a reported worldwide mortality rate of 11%. MERS-CoVs is highly related to camel CoVs. In 2019, a cluster of patients infected with 2019-nCoV was identified in an outbreak in Wuhan, China, and soon spread worldwide. 2019-nCoV is transmitted through the respiratory tract and then induced pneumonia. Molecular diagnosis based on upper respiratory region swabs is used for confirmation of this virus. This review examines the structure and genomic makeup of the viruses as well as the life cycle, diagnosis, and potential therapy.

Molecular differentiation of Korean Newcastle disease virus (NDV) by restriction enzyme analysis and pathotype-specific RT-PCR

  • Kwon, Hyuk-Joon;Cho, Sun-Hee;Kim, Sun-Joong
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.371-379
    • /
    • 2006
  • Newcastle disease virus (NDV) is a single-stranded negative sense RNA virus, which has been classified as a member of the Avulavirus genus of the Paramyxoviridae family. It is also one of the most important pathogens in the poultry industry. The glycoproteins, fusion (F) and hemagglutinin-neuraminidase (HN), determine the virulence of NDV, and the relevant molecular structures have already been determined. NDV isolates differ in terms of virulence, and at least 2 of 9 genotypes (I-IX) have been shown to co-circulate. Therefore, it is clearly important to differentiate between vaccine strains and field isolates. In vivo pathogenicity tests have been the standard protocol for some time, but molecular methods appear preferable in terms of the rapidity of diagnosis, as well as animal welfare concerns. In this study, we have designed primer sets from HN gene for phylogenetic analysis and restriction enzyme analysis, and from F gene for pathotype-specific RT-PCR. Via the combination of 2 methods, 106 Korean NDV isolates obtained from 1980 to 2005 were differentiated into vaccine strains, and virulent genotypes VI and VII. The genotype VI viruses were only rarely isolated after 1999, and genotype VII, after it was initially isolated from poultry in 1995, recurred in 2000, and then became the main NDV constituting a threat to the Korean poultry industry.

Interpretation and Prospection of Influenza Virus through Swine-origin Influenza Virus (신종플루 바이러스를 통한 인플루엔자 바이러스의 해석 및 전망)

  • Chang, Kyung-Soo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.1
    • /
    • pp.1-15
    • /
    • 2010
  • Swine influenza virus (SIV) or swine-origin influenza virus (S-OIV) is endemic in swine, and classified into influenza A and influenza C but not influenza B. Swine influenza A includes H1N1, H1N2, H3N1, H3N2 and H2N3 subtypes. Infection of SIV occurs in only swine and that of S-OIV is rare in human. What human can be infected with S-OIV is called as zoonotic swine flu. Pandemic 2009 swine influenza H1N1 virus (2009 H1N1) was emerged in Mexico, America and Canada and spread worldwide. The triple-reassortant H1N1 resulting from antigenic drift was contained with HA, NA and PB1 of human or swine influenza virus, PB2 and PA polymerase of avian influenza virus, and M, NP and NS of swine influenza virus, The 2009 H1N1 enables to transmit to human and swine. The symptoms and signs in human infected with 2009 H1N1 virus are fever, cough and sore throat, pneumonia as well as diarrhea and vomiting. Co-infection with other viruses and bacteria such as Streptococcus pneumoniae can occur high mortality in high-risk population. 2009 H1N1 virus was easily differentiated from seasonal flu by real time RT-PCR which contributed rapid and confirmed diagnosis. The 2009 H1N1 virus was treated with NA inhibitors such as oseltamivir (Tamiflu) and zanamivir (Relenza) but not with adamantanes such as amantadine and rimantadine. Evolution of influenza virus has continued in various hosts. Development of a more effective vaccine against influenza prototypes is needed to protect new influenza infection such as H5 and H7 subtypes to infect to multi-organ and cause high pathogenicity.

  • PDF

Sputum Processing Method for Lateral Flow Immunochromatographic Assays to Detect Coronaviruses

  • Aram Kang;Minjoo Yeom;Hyekwon Kim;Sun-Woo Yoon;Dae-Gwin Jeong;Hyong-Joon Moon;Kwang-Soo Lyoo;Woonsung Na;Daesub Song
    • IMMUNE NETWORK
    • /
    • v.21 no.1
    • /
    • pp.11.1-11.10
    • /
    • 2021
  • Coronavirus causes an infectious disease in various species and crosses the species barriers leading to the outbreak of zoonotic diseases. Due to the respiratory diseases are mainly caused in humans and viruses are replicated and excreted through the respiratory tract, the nasal fluid and sputum are mainly used for diagnosis. Early diagnosis of coronavirus plays an important role in preventing its spread and is essential for quarantine policies. For rapid decision and prompt triage of infected host, the immunochromatographic assay (ICA) has been widely used for point of care testing. However, when the ICA is applied to an expectorated sputum in which antigens are present, the viscosity of sputum interferes with the migration of the antigens on the test strip. To overcome this limitation, it is necessary to use a mucolytic agent without affecting the antigens. In this study, we combined known mucolytic agents to lower the viscosity of sputum and applied that to alpha and beta coronavirus, porcine epidemic diarrhea virus (PEDV) and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, spiked in sputum to find optimal pretreatment conditions. The pretreatment method using tris(2-carboxyethyl)phosphine (TCEP) and BSA was suitable for ICA diagnosis of sputum samples spiked with PEDV and MERS-CoV. This sensitive assay for the detection of coronavirus in sputum provides an useful information for the diagnosis of pathogen in low respiratory tract.

Determining genetic diversity of prevalent G and P genotype of Bovine Rotavirus A from neonatal calves of Gujarat, India

  • Akash Golaviya;Rafiyuddin Mathakiya;Subhash Jakhesara;Prakash Koringa
    • Journal of Veterinary Science
    • /
    • v.25 no.4
    • /
    • pp.55.1-55.12
    • /
    • 2024
  • Importance: Neonatal calf diarrhea is a major cause of mortality in newborn calves worldwide, posing a significant challenge in bovine herds. Group A Bovine Rotaviruses (BRVA) are the primary contributors to severe gastroenteritis in calves under two months old. Objectives: This study examined the prevalence and molecular characterization of BRVA in neonatal calves in Gujarat, India. Methods: Sixty-nine diarrheic fecal samples were collected and subjected to various molecular methods of BRVA detection, isolation, and characterization. Results: The latex agglutination test (LAT), electropherotyping (RNA-PAGE), and reverse transcription polymerase chain reaction revealed positivity rates of 39.13%, 20.30%, and 37.70%, respectively. RNA-PAGE identified 11 bands with a 4:2:3:2 migration pattern, indicative of the segmented genome of BRVA. BRVA was successfully isolated from LATpositive samples, with 26 samples exhibiting clear cytopathic effects upon passage in MA-104 cell lines. Genotyping identified G10 as the predominant G genotype, with P[11] genotypes comprising 76.92% of the isolates. The most common G/P combination was G10P[11], highlighting its zoonotic potential. Conclusions and Relevance: These findings underscore the importance of molecular detection and genotyping for effective vaccine development. This study provides crucial insights into the prevalent G and P genotypes of BRVA in Gujarat, India, aiding in the development of targeted control measures.