• Title/Summary/Keyword: Zoom lens system

Search Result 69, Processing Time 0.025 seconds

Development of a remote controlled mobile robot system for monitoring nuclear power plant (원전 이동감시 및 방사선 측정용 원격조종 로봇 개발)

  • 구관모;이범희;우희곤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.511-515
    • /
    • 1996
  • A remote controlled mobile robot system has been developed and tested to monitor the radiation area in the nuclear power plant. The mobile robot system operates according to car-driving-like commands and is capable of radiation measurement and visual inspection in unmanned situations under radiation. The robot system is equipped with a radiation sensor and two cameras with appropriate illumination set-ups. The camera with auto-focus function and 8-times zoom lens is mounted on the pan/tilt rotational base and the other is mounted on the front panel of the robot system. All commands regarding the motion of the mobile robot and various sensors are given through the monitoring system which is designed to provide an integrated man-machine interface.

  • PDF

Automation for Oyster Hinge Breaking System

  • So, J.D.;Wheaton, F.W.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.658-667
    • /
    • 1996
  • A computer vision system was developed to automatically detect and locate the oyster hinge line, one step in shucking an oyster. The computer vision system consisted of a personal computer, a color frame grabber, a color CCD video camera with a zoom lens, two video monitor, a specially designed fixture to hold the oyster, a lighting system to illuminate the oyster and the system software. The software consisted of a combination of commercially available programs and custom designed programs developed using the Microsoft CTM . Test results showed that the image resolution was the most important variable influencing hinge detection efficiency. Whether or not the trimmed -off-flat-white surface area was dry or wet, the oyster size relative to the image size selected , and the image processing methods used all influenced the hinge locating efficiency. The best computer software and hardware combination used successfully located 97% of the oyster hinge lines tested. This efficienc was achieve using camera field of view of 1.9 by 1.5cm , a 180 by 170 pixel image window, and a dry trimmed -off oyster hinge end surface.

  • PDF

Athermalized Design of Compact Optical System for Phone Camera (폰 카메라용 초소형 광학계의 온도보정 설계)

  • Park, Sung-Chan;You, Byoung-Taek;Lee, Jong-Ung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.3
    • /
    • pp.148-155
    • /
    • 2009
  • In this paper, we analysed what effect the design variables, such as refractive index, central thickness and radius of curvature, had on the first order properties and image quality of optical systems when temperature changed. The optical parameters were varied at each temperature, then the coupling and ruler methods were used to design an athermalized lens for a phone camera. This concept was first used to design the lens for a 1/3.2" 5M phone camera. The designed lens satisfies all the specifications for a phone camera, and the variations of the back focal length(${\Delta}BFL$) are reduced to $10{\mu}m$ for a temperature range of $-10^{\circ}C$ to $+60^{\circ}C$. Also, the TTL of 5.5 mm results in a compact system. All design concepts and results discussed in this paper are expected to be useful in development for the phone and CCTV camera.

Super-Resolution Iris Image Restoration using Single Image for Iris Recognition

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.117-137
    • /
    • 2010
  • Iris recognition is a biometric technique which uses unique iris patterns between the pupil and sclera. The advantage of iris recognition lies in high recognition accuracy; however, for good performance, it requires the diameter of the iris to be greater than 200 pixels in an input image. So, a conventional iris system uses a camera with a costly and bulky zoom lens. To overcome this problem, we propose a new method to restore a low resolution iris image into a high resolution image using a single image. This study has three novelties compared to previous works: (i) To obtain a high resolution iris image, we only use a single iris image. This can solve the problems of conventional restoration methods with multiple images, which need considerable processing time for image capturing and registration. (ii) By using bilinear interpolation and a constrained least squares (CLS) filter based on the degradation model, we obtain a high resolution iris image with high recognition performance at fast speed. (iii) We select the optimized parameters of the CLS filter and degradation model according to the zoom factor of the image in terms of recognition accuracy. Experimental results showed that the accuracy of iris recognition was enhanced using the proposed method.

The Development of adaptive optical dimension measuring system (적응형 광학 치수 측정 장치 개발)

  • 윤경환;강영준;백성훈;강신재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.690-695
    • /
    • 2004
  • A new dimension measuring method for the measurement of diameter of an object has been developed using laser triangulation. The 3-D data of an object was calculated from the 2dimensional image information obtained by the laser stripe using the laser triangulation. The system can measure the diameter of hole not only in a normal plane but also in an incline plane. We can experiment with magnification that is optimized according to size of object using zoom lens. In this paper, the theoretical formula and calibration of the system were described. The measuring precision of the system was investigated by experiment.

  • PDF

Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics (이중 시야 중적외선 광학계 비열화·나르시서스 분석)

  • Jeong, Do Hwan;Lee, Jun Ho;Jeong, Ho;Ok, Chang Min;Park, Hyun-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.3
    • /
    • pp.110-118
    • /
    • 2018
  • We have designed a mid-infrared optical system for an airborne electro-optical targeting system. The mid-IR optical system is a dual-field-of-view (FOV) optics for an airborne electro-optical targeting system. The optics consists of a beam-reducer, a zoom lens group, a relay lens group, a cold stop conjugation optics, and an IR detector. The IR detector is an f/5.3 cooled detector with a resolution of $1280{\times}1024$ square pixels, with a pixel size of $15{\times}15{\mu}m$. The optics provides two stepwise FOVs ($1.50^{\circ}{\times}1.20^{\circ}$ and $5.40^{\circ}{\times}4.23^{\circ}$) by the insertion of two lenses into the zoom lens group. The IR optical system was designed in such a way that the working f-number (f/5.3) of the cold stop internally provided by the IR detector is maintained over the entire FOV when changing the zoom. We performed two analyses to investigate thermal effects on the image quality: athermalization analysis and Narcissus analysis. Athermalization analysis investigated the image focus shift and residual high-order wavefront aberrations as the working temperature changes from $-55^{\circ}C$ to $50^{\circ}C$. We first identified the best compensator for the thermal focus drift, using the Zernike polynomial decomposition method. With the selected compensator, the optics was shown to maintain the on-axis MTF at the Nyquist frequency of the detector over 10%, throughout the temperature range. Narcissus analysis investigated the existence of the thermal ghost images of the cold detector formed by the optics itself, which is quantified by the Narcissus Induced Temperature Difference (NITD). The reported design was shown to have an NITD of less than $1.5^{\circ}C$.

Machine Vision Inspection System of Micro-Drilling Processes On the Machine Tool (공작기계 상에서 마이크로드릴 공정의 머신비전 검사시스템)

  • Yoon, Hyuk-Sang;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.6
    • /
    • pp.867-875
    • /
    • 2004
  • In order to inspect burr geometry and hole quality in micro-drilling processes, a cost-effective method using an image processing and shape from focus (SFF) methods on the machine tool is proposed. A CCD camera with a zoom lens and a novel illumination unit is used in this paper. Since the on-machine vision unit is incorporated with the CNC function of the machine tool, direct measurement and condition monitoring of micro-drilling processes are conducted between drilling processes on the machine tool. Stainless steel and hardened tool steel are used as specimens, as well as twist drills made of carbide are used in experiments. Validity of the developed system is confirmed through experiments.

Zoom Lens Calibration for the Video Measuring System (VMS에서의 줌 렌즈 캘리브레이션)

  • 최기원;이호준;한광수;최준수
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.625-627
    • /
    • 2003
  • 본 논문에서는 정밀 측정 장비인 VMS(Video Measuring System)에서 줌을 서보 모터(servo motor)로 제어하는 자동화된 줌 렌즈 보정에 대하여 연구하였다. 이전의 자동화된 줌 렌즈의 연구들은 줌, 초점과 조리개 3 가지의 렌즈 설정에 대한 모든 카메라 파라미터들에 대하여 보정하였지만, VMS 의 자동화된 줌 렌즈의 보정은 줌의 렌즈 설정에 대해서만 보정한다. 줌 렌즈 설정에 의해 보정 되는 파라미터들은 줌에 따라 변화하는 이미지 중심과 픽셀 크기이다. 카메라의 외부 파라미터들을 제외한 이유는 VMS에서는 카메라가 움직이고 않고, 스테이지가 움직이면서 그에 따른 좌표 값을 주기 때문에 카메라의 이동과 회전에 대하여 보정할 필요가 없다. 줌을 조정하는 줌 단계가 많기 때문에 모든 줌 단계를 보정하기 위해서는 많은 시간과 노력이 든다. 본 논문에서는 보정 파라미터들을 최소 단계의 줌 렌즈 설정에 대하여 계산하고 계산되지 않은 영역들을 보간법으로 빠르고 효과적인 줌 렌즈 보정을 할 수 있는 방법을 제안하였다.

  • PDF

Statistical Analysis of Focus Adjustment Method for a Floating Imaging System with Symmetric Error Factors (대칭형 공차를 갖는 플로팅 광학계의 상면 변화 보정 방법에 대한 통계적 해석)

  • Ryu, Jae Myung;Kim, Yong Su;Jo, Jae Heung;Kang, Geon Mo;Lee, Hae Jin;Lee, Hyuck Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.189-196
    • /
    • 2012
  • A floating optical system is a system that moves more than 2 groups to focus at the camera lens. At the camera optics, the floating system that is mainly used is an optical system such as a macro lens which changes magnification very much. When the floating system is assembled and fabricated in the factory, there are differences between the image plane of the sensor and the focal plane of the infinity or macro state. Therefore, in a considerable proportion of cases, the focus adjustment to minimize the difference of BWD(Back Working Distance) is carried out in the process of manufacturing. In this paper, in order to decide the movement of each group in a floating system, we evaluated the rotation angle of CAM for the focus adjustment. We know that the maximum magnification of macro state is corrected by this numerical method for the focus adjustment, too. We investigated the limit of CAM rotation angle of the system by using statistical analysis for CAM rotation angle, which uses the focus adjustment of the floating system with symmetric error factors.

On the Design of LED Dimming Control System for Optical Zoom Lens (광학 줌렌즈를 위한 LED 조명 제어 시스템 설계)

  • Min, Jun Hong;Kim, Min Ho;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.4
    • /
    • pp.65-70
    • /
    • 2014
  • This paper is to improve the problem of the LED dimming control system using the conventional PWM and DAC method. The conventional PWM method controls the average current to switch dimming signal. This method generates the flicker when controlling at a low current. In order to solve the problem, this system prevents the flicker with the DAC method. The LED is lit at micro-current flowing in the LED. And offset voltage is generated in the output of the DAC when the DAC output is very low voltage as 0V. This was resolved by the voltage drop of the output voltage to construct a negative offset circuit. In addition, the LED current can't flow as set values because of overheating of FET. In order to solve the problem, the 16 bits ADC in the microprocessor is a more accurate current control receives the LED current in comparison with the set value. Therefore, the LED dimming control system proposed in this paper showed the accurate and reliable more than conventional systems.