• Title/Summary/Keyword: Zone mode

Search Result 378, Processing Time 0.026 seconds

레이저 표면경화처리에서 빔의 형태에 따른 경화층 크기에 관한 연구

  • 김재웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.04b
    • /
    • pp.13-17
    • /
    • 1993
  • Analytical models for the prediction of the size of hardened zone in laser surface hardening are presented. The models are based on the solutions to the problem of three-dimensional heat flow in plates with infinite thickness. The validity of the model was tested on medium carbon steel for Gaaussian mode of beam. Then the model for rectangular beam was used for the prediction of the size of harened zone on various hardening process parameters. From the calculation results it appeared that the size and shape of the hardened zone are strongly dependent on process parameters suchas beam mode, beam size, and traverse speed.

A Study on the Rotary Absorptive Dehumidifer (회전형 흡수식 제습기에 관한 연구)

  • Kim, Young-Il;Kim, Hyo-Kyung
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.15 no.2
    • /
    • pp.169-181
    • /
    • 1986
  • A numerical analysis has been conducted on the dehumidification phenomena of rotary absorptive dehumidifier. Parameters that affect the dehumidification efficiency, such as regeneration temperature, humidity, rotor angular velocity, air flow rate and regeneration section angle are studied and optimum driving conditions are determined from the results, Furthermore three new types of dehumidification method are developed to improve the efficiency They are named MODE 2, 3 and 4, while the present one MODE 1. Cooling zone has been constructed between regeneration and process Bone in MODE 2 and as a result exit temperature of the process air decreases. MODE 3 an improvement of MODE 2, recirculates the cooling air into the regeneration zone and regeneration input as well as exit temperature decreases. In MODE 4, some of tee regeneration air is recirculated and it cuts down the regeneration input. Among them MODE 3, showed the best dehumidification efficiency.

  • PDF

Evaluation of Adhesive Properties Using Cohesive Zone Model : Mode I (Cohesive Zone Model을 이용한 접착제 물성평가 : 모드 I)

  • Lee, Chan-Joo;Lee, Sang-Kon;Ko, Dae-Cheol;Kim, Byung-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.474-481
    • /
    • 2009
  • Fracture models and criteria of adhesive with two parameters, namely $G_C$ and ${\sigma}_{max}$, have been developed to describe the fracture process of adhesive joints. Cohesive zone model(CZM) is a representative two parameter failure criteria approach. In CZM, ${\sigma}_{max}$ is a critical, limiting maximum value of the stress in the damage zone ahead of the crack and is assumed to have some physical significance in adhesive failure. Based on CZM and finite element analysis method, the relationship between fracture load and adhesive properties, as $G_{IC)$ and $({\sigma}_{max})_I$, was investigated in adhesively bonded joint tensile test and T-peel test. The two parameters in tensile mode loading were evaluated by using the relationship. The value of $G_{\IC}$ evaluated by proposed method showed close agreement with analytical solution for tapered double cantilever beam(TDCB) test which proposed in an ASTM standard.

Anti-Plane Shear Behavior of an Arbitrarily Oriented Crack in Bonded Materials with a Nonhomogeneous Interfacial Zone

  • Chung, Yong-Moon;Kim, Chul;Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.269-279
    • /
    • 2003
  • The anti-plane shear problem of bonded elastic materials containing a crack at an arbitrary angle to the graded interfacial zone is investigated in this paper The interfacial zone is modeled as a nonhomogeneous interlayer of finite thickness with the continuously varying shear modulus between the two dissimilar, homogeneous half-planes. Formulation of the crack problem is based upon the use of the Fourier integral transform method and the coordinate transformations of basic field variables. The resulting Cauchy-type singular integral equation is solved numerically to provide the values of mode 111 stress intensity factors. A comprehensive parametric study is then presented of the influence of crack obliquity on the stress intensity factors for different crack size and locations and for different material combinations, in conjunction with the material nonhomogeneity within the graded interfacial zone.

Validating one-handed interaction modes for supporting touch dead-zone in large screen smartphones (대화면 스마트폰의 한 손 조작 시 터치 사각영역 지원 인터랙션의 유용성)

  • Park, Minji;Kim, Huhn
    • Journal of the HCI Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2017
  • The purpose of this study is to evaluate the effectiveness of one-handed interaction modes for supporting the dead zone that users must be difficulty in performing the touch manipulation with only one hand. For the purpose, this study analyzed two existing one-handed modes in iPhone and Android smartphones, and proposed and implemented two additional one-handed modes. In order to investigate effectiveness of the one-handed modes, we performed the experiment that compared normal touch mode with the four one-handed modes. Experimental results showed that all one-handed modes required more time than normal touch mode because of the time requiring in both mode change and recognition. However, the participants had difficulty in manipulating continuous touches at dead zone area with only normal touch. Moreover, the subjective satisfaction was high in one-handed modes thanks to touch convenience and smooth transition effects in mode change. In special, the one-handed mode at iPhone was the most effective out of the tested modes.

Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete

  • Kumar, Ch.Naga Satish;Krishna, P.V.V.S.S.R.;Kumar, D.Rohini
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.613-624
    • /
    • 2017
  • In this paper, an experimental investigation was carried out to study the effect of volume fraction of fiber and maximum aggregate size on mode-I fracture parameters of high strength concrete. Total of 108 beams were tested on loading frame with three point loading, the variables in the high strength concrete beams are aggregate size (20 mm, 16 mm and 10 mm) and volume fraction of fibers (0%, 0.5%, 1% and 1.5%). The fracture parameters like fracture energy, brittleness number and fracture process zone were analyzed by the size effect method (SEM). It was found that fracture energy (Gf) increases with increasing the Maximum aggregate size and also increasing the volume of fibers, brittleness number (${\beta}$) decreases and fracture process zone (CF) increases.

Weldability of SUS304 and Ti Dissimilar Welds with Various Welding Speed using Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Ti 이종재료의 용접속도에 따른 용접특성)

  • Lee, Su-Jin;Katayama, Seiji;Kim, Jong-Do
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.64-70
    • /
    • 2013
  • The joining of Ti and SUS304 dissimilar metals is one of the effective measures to save rare metal. But Ti and SUS304 have differences in materials properties, and Ti and Fe intermetallic compounds such as TiFe and $TiFe_2$ are easily formed in weld fusion zone between Ti and SUS304. Nevertheless, in this study, full penetration lap dissimilar welding of Ti and SUS304 using single-mode fiber laser with ultra-high welding speed was tried, and it was found out that ultra-high welding speed could control the generation of intermetallic compound. To recognize the formation of intermetallic phase in the weld fusion zone and the compound zone of interface weld area were observed and analyzed using energy dispersive X-ray spectroscopy (EDX). And it was confirmed that the ultra-high welding speed could reduce amount of intermetallic compounds, but the intermetallic compounds were existed in the weld fusion zone under the all conditions.

A Study on the Characteristic of Weld Joint and Tensile Fracture of SUS304 and Cu High-Speed Dissimilar Lap Welds by Single Mode Fiber Laser (싱글모드 파이버 레이저를 이용한 SUS304와 Cu의 고속 겹치기 용접에서 접합부 및 인장시험 파단부의 특성에 관한 연구)

  • Lee, Su-Jin;Kim, Jong-Do;Katayama, Seiji
    • Journal of Welding and Joining
    • /
    • v.32 no.6
    • /
    • pp.56-63
    • /
    • 2014
  • To develop and understand dissimilar metals joining of Stainless steel and Copper, ultra-high speed laser lap welding was studied using single mode fiber laser in this study. SUS304 and Cu have large differences in materials properties, and Cu and Fe have no intermetallic compounds by typical binary phase of Cu and Fe system. In this study, ultra-high speed lap welds of SUS304 and Cu dissimilar metals using single-mode fiber laser was generated, and weldability of the weld fusion zone was evaluated using a tensile shear test. To understand the phenomenon of tensile shear load, weld fusion zone of interface weld area and fracture parts after tensile shear test were observed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) analysis system. And it was confirmed that Cu was easily melting and penetrating in the grain boundaries of SUS304 because of low melting temperature. And high thermal conductivity of copper occurred dissipate heat energy rapidly. These properties cause the solidification cracking in weld zone.

Analysis of Heating Energy in a Korean-Style Apartment Building 3 : The Effect of Room Condition Settings (한국형 아파트의 난방에너지 분석 3 :실내설정조건의 영향)

  • Park, Yoo-Won;Yoo, Ho-Seon;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.8
    • /
    • pp.722-728
    • /
    • 2005
  • The present paper deals with heating energy estimation in Korean-style apartments, paying special attention to the effect of room condition settings. Two types of heating modes are considered: continuous single-zone and scheduled multi-zone. In the latter, zones during unoccupied periods remain unconditioned. Also analyzed are sensitivities in heating energy with respect to the air change rate and the set temperature. The energy use is estimated with TRNSYS 15, a dynamic load calculation program. Heating energy for the actual residential condition (1.0 ACH and $24^{\circ}C$) appears to be nearly the same as that for a typical design standard (1.5 ACH and $20^{\circ}C$). The air change rate affects heating energy as sensitive]y as the set temperature. For all the simulated cases, the scheduled multi-zone heating mode is more energy-efficient than the continuous single-zone. Heating energy depends appreciably on the shading factor. It is expected that considerable heating energy for apartment houses can be saved by employing a multi-zone mode along with appropriate control devices.

Enhancing the ability of strain energy release rate criterion for fracture assessment of orthotropic materials under mixed-mode I/II loading considering the effect of crack tip damage zone

  • Khaji, Zahra;Fakoor, Mahdi
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.817-828
    • /
    • 2022
  • In this study, considering dissipated energy in fracture process zone (FPZ), a novel criterion based on maximum strain energy release rate (SER) for orthotropic materials is presented. General case of in-plane loading for cracks along the fibers is assumed. According to the experimental observations, crack propagation is supposed along the fibers and the reinforcement isotropic solid (RIS) concept is employed as a superior model for orthotropic materials. SER in crack initiation and propagation phases is investigated. Elastic properties of FPZ are extracted as a function of undamaged matrix media and micro-crack density. This criterion meaningfully links between dissipated energy due to toughening mechanisms of FPZ and the macroscopic fracture by defining stress intensity factors of the damaged zone. These coefficients are used in equations of maximum SER criterion. The effect of crack initiation angle and the damaged zone is considered simultaneously in this criterion and mode II stress intensity factor is extracted in terms of stress intensity factors of damage zone and crack initiation angle. This criterion can evaluate the effects of FPZ on the fracture behavior of orthotropic material. Good agreement between extracted fracture limit curves (FLC's) and available experimental data proves the ability of the new proposed criterion.