• Title/Summary/Keyword: ZnSe

Search Result 759, Processing Time 0.029 seconds

Highly Luminescent Multi-shell Structured InP Quantum Dot for White LEDs Application

  • Kim, Gyeong-Nam;Jeong, So-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.531-531
    • /
    • 2012
  • So many groups have been researching the green quantum dots such as InP, InP/ZnS for overcoming the semiconductor nanoparticles composed with heavy metals like as Cd and Pb so on. In spite of much effort to keep up CdSe quantum dots, it does not reach the good properties compared with CdSe/ZnS quantum dots. This quantum dot has improved its properties through the generation of core/shell CdSe/ZnS structure or core/multi-shell structures like as CdSe/CdS/ZnS and CdSe/CdS/ CdZnS/ZnS. In this research, we try to synthesize the InP multi-shell structure by the successiveion layer absorption reaction (SILAR) in the one pot. The synthesized multi-shell structure has improved quantum yield and photo-stability. To generate white light, highly luminescent InP multi-shell quantum dots were mixed with yellow phosphor and integrated on the blue LED chip. This InP multi-shell improved red region of the LEDs and generated high CRI.

  • PDF

Effect of Pre-annealing on the Formation of Cu2ZnSn(S,Se)4 Thin Films from a Se-containing Cu/SnSe2/ZnSe2 Precursor

  • Ko, Young Min;Kim, Sung Tae;Ko, Jae Hyuck;Ahn, Byung Tae;Chalapathy, R.B.V.
    • Current Photovoltaic Research
    • /
    • v.10 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • A Se-containing Cu/SnSe2/ZnSe precursor was employed to introduce S to the precursor to form Cu2ZnSn(S,Se)4 (CZTSSe) film. The morphology of CZTSSe films strongly varied with two different pre-annealing environments: S and N2. The CZTSSe film with S pre-annealing showed a dense morphology with a smooth surface, while that with N2 pre-annealing showed a porous film with a plate-shaped grains on the surface. CuS and Cu2Sn(S,Se)3 phases formed during the S pre-annealing stage, while SnSe and Cu2SnSe3 phases formed during the N2 pre-annealing stage. The SnSe phase formed during N2 pre-annealing generated SnS2 phase that had plate shape and severely aggravated the morphology of CZTSSe film. The power conversion efficiency of the CZTSSe solar cell with S pre-annealing was low (1.9%) due to existence of Zn(S.Se) layer between CZTSSe and Mo substrate. The results indicated that S pre-annealing of the precursor was a promising method to achieve a good morphology for large area application.

A Study on the Characteristics of Se/Zns Thin Film Light Amplifiers (Se/Zns 박막 광증폭기의 특성에 관한 연구)

  • Park, Gye-Choon;Im, Young-Sham;Lee, JIn;Chung, Hae-Duck;Gu, Hal-Bon;Kim, Jong-Uk;Jeong, In-Seong;Jeong, Woon-Jo;Lee, Ki-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.307-310
    • /
    • 1999
  • Using Se as a photoconductive element and ZnS as a luminescent element, a Se/ZnS thin film device for light amplifier applications was fabricated and its characteristics were investigated. The Se/ZnS thin film light amplifier was fabricated by evaporating the ZnS thin film on an ITO(Indium Tin Oxide) glass and the Se thin film on the ZnS thin film in sequence. The results of the characteristics investigation are summarized as follows: (1) When the frequency of an excitation voltage was increased, both the brightness response and the brightness saturation of the Se/ZnS thin film light amplifier began to start at a higher light input. (2) The gain of the Se/ZnS thin film light amplifier was dependent upon the amplitude and the frequency of the excitation voltage as well as an external light input. (3) When the Se/ZnS thin film light amplifier was excited by a direct current of a constant voltage, the frequency of the output brightness was\\`equal to the frequency of the input light applied. When the light amplifier was excited by a sinusoidal voltage of 60 Hz, the frequency of the output brightness was 120 Hz.

  • PDF

EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals

  • Lee, Jae-Woog;Lee, Sang-Min;Huh, Young-Duk;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1997-2002
    • /
    • 2010
  • ZnSe and ZnS:Mn nanocrystals were synthesized via the thermal decomposition of their corresponding organometallic precursors in a hot coordinating solvent (TOP/TOPO) mixture. The organic surface capping agents were substituted with EDTA molecules to impart hydrophilic surface properties to the resulting nanocrystals. The optical properties of the water-dispersible nanocrystals were analyzed by UV-visible and room temperature solution photoluminescence (PL) spectroscopy. The powders were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and confocal laser scanning microscopy (CLSM). The solution PL spectra revealed emission peaks at 390 (ZnSe-EDTA) and 597 (ZnS:Mn-EDTA) nm with PL efficiencies of 4.0 (former) and 2.4% (latter), respectively. Two-photon spectra were obtained by fixing the excitation light source wavelengths at 616 nm (ZnSe-EDTA) and 560 nm (ZnS:Mn-EDTA). The emission peaks appeared at the same positions to that of the PL spectra but with lower peak intensity. In addition, the morphology and sizes of the nanocrystals were estimated from the corresponding HR-TEM images. The measured average particle sizes were 5.4 nm (ZnSe-EDTA) with a standard deviation of 1.2 nm, and 4.7 nm (ZnS:Mn-EDTA) with a standard deviation of 0.8 nm, respectively.

Optical properties of $ZnIn_2Se$ and $ZnIn_2Se_4$:Co single crystals ($ZnIn_2Se_4$$ZnIn_2Se_4$:Co 단결정의 광학적 특성)

  • 최성휴;방태환;박복남
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.2
    • /
    • pp.129-135
    • /
    • 1997
  • Undoped and Co-doped $ZnIn_2Se_4$ single crystals crystallized in the tetragonal space group 142m, with lattice constants a=5.748 $\AA$ and c=11.475 $\AA$, and a=5.567 $\AA$ and c=11.401 $\AA$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of these compounds had an indirect band gap, the direct and the indirect energy gaps of these compounds decreased as temperature changed from 10 to 300 K. The temperature coefficients of the direct energy gaps were found to be $\alpha=3.71\times10^{-4}$eV/K and $\beta$=519 K for $\alpha=3.71\times10^{-4}$eV/K and $\beta$=421K for $ZnIn_2Se_4$: Co. The temperature coefficients of the indirect energy gaps were also found to be $\alpha=2.31\times10^{-4}$ eV/K and $\beta$=285 K for $ZnIn_2Se_4$, and $\alpha=3.71\times10^{-4}$eV/K and $\beta$=609 K for $ZnIn_2Se_4$:Co, respectively. Six impurity optical absorption peaks due to cobalt are observed in $ZnIn_2Se_4$:Co single crystal. These impurity optical absorption peaks can be attibuted to the electronic transitions between the split energy levels of$CO^{2+}$ ions located at Td symmetry site of $ZnIn_2Se_4$ host lattice. The 1st order spin-orbit coupling constant ($\lambda$), Racah parameter (B), and crystal field parameter (Dq) ARE GIVEN AS -$243\textrm{cm}^{-1}, 587\textrm{cm}^{-1}, \;and\;327\textrm{cm}^{-1}$, respectively.

  • PDF

Study on Indium-free and Indium-reduced thin film solar absorber materials for photovoltaic application

  • Wibowo, Rachmat Adhi;Kim, Gyu-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.270-273
    • /
    • 2007
  • In this report, Indium-free and Indium-reduced thin film materials for solar absorber were studied in order to search alternative materials for thin film solar cell. The films of $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ were deposited using mixed binary chalcogenides powders. From the film bulk analysis result, it is observed that Cu concentration is a function of substrate temperature as well as CuSe mole ratio in the target. Under optimized conditions, $Cu_2ZnSnSe_4$ and $Cu_2ZnSnSe_2$ thin films grow with strong (112), (220/204) and (312/116) reflections. Films are found to exhibit a high absorption coefficient of $10^4$ $cm^{-1}$. $Cu_2ZnSnSe_4$ film shows a 1.5 eV band gap. On the other side, an increasing of optical band gap from 1.0 eV to 1.25 eV ($CuInSnSe_2$) is found to be proportional with an increasing of Zn concentration. All films have a p-type semiconductor characteristic with a carrier concentration in the order of $10^{14}$ $cm^{-3}$, a mobility about $10^1$ $cm^{2{\cdot}-1.}S^{-1}$ and a resistivity at the range of $10^2-10^6$ ${\Omega}{\cdot}m$.

  • PDF

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Hyangsook;Bang, Jinju;Lee, Kijung;Kang, Jongwuk;Hong, Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Effect of the Mixed Treatment of Electrolyzed Micronutrients with Nutrient Solution and SCB Slurry on Mineral Content and Growth of Cherry Tomatoes (Lycopersicon esculentum) (양액과 SCB액비 처리에 미량요소 첨가가 방울토마토의 미네랄 함량과 생육에 미치는 영향)

  • Ryoo, Jong-Won
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.3
    • /
    • pp.385-397
    • /
    • 2012
  • A pot experiment was carried out to examined the effect of electrolyzed micronutrients (Fe, Mn, Zn, Sr, Se, Sn, Co, Ti, and V) solution treatments with nutrient solution and SCB slurry on the mineral content and growth of tomato in cherry tomato (Lycopersicon esculentum). The treatment of nutrient solution (NS)+micronutrients solution (MS) significantly increased the concentrations of Li, Zn, Sr, Se, Ti as compared with that of NS alone in the cherry tomato fruits, and SCB+MS solution treatment significantly increased Li, Zn, Se, Co, Sr, and Ti contents as compared with SCB treatment. The micronutrient contents of MN+SCB+MS treatment were significantly higher in Li, Zn, Se, Co and in Ti than those of SCB and NS treatment, respectively. The growth and yield of cherry tomato fruits was highest with NS treatment. The yield indices of cherry tomato treated with NS+MS treatment and SCB+NS+MS were 97% and 94% of NS treatment. In conclusion, it seems to be possible to produce micronutrient-fortified cherry tomato by the mixed treatment of electrolyzed micronutrients.

Growth and characterization of ZnSe/GaAs epilayer by hot-wall epitaxy method (Hot-Wal Epitaxy 방법에 의한 ZnSe/GaAs 박막 성장과 특성)

  • 정태수;강창훈;유평렬
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.302-307
    • /
    • 1999
  • We have grown a high quality ZnSe(100) epilayer on the GaAs(100) substrate by hot-wall epitaxy method. The FWHM value from double-crystal x-ray diffraction rocking curve and growth rate of the ZnSe epilayer grown under the optimal growth conditions were 195 arcsec and 0.03 $\mu \textrm m$/min, respectively. The $I_2^U$ and $I_2^L$ peaks, which split by strain due to lattice mismatch between substrate and epilayer, were measured from the photoluminescence experiment. And we found that the residual impurities in ZnSe epilayer were concerned with Al or CI elements from the calculated binding energy of donor impurity.

  • PDF

Role of growth Conditions of Hot Wall (Hot Wall Epitaxy의 성장조건이 ZnSe/GaAs 이종접합구조의 구조적, 광학적 특성에 미치는 영향)

  • 이종원
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 1998
  • 본 연구에서는 열벽성장법에 의해 ZnSe 에피막을 GaAs 기판에 성장하고 double crystal x-ray diffractometer와 Photoluminescence (PL) 등의 장치를 이용하여 구조족, 광학 적 특성을 연구하였다. x-선 반치폭과 PL피크강도로부터 최적의 기판온도가 34$0^{\circ}C$임을 알 수 있었다. 또한 기판온도, 열벽부온도, 원료부온도, 성장시간등의 성장조건이 표면거칠기 성 장률, x-선 반치폭, PL 피크강도 등에 미치는 영향에 대하여 살펴보았다. 최적 성장조건하 에성장된 ZnSe 에피막의 x-선 반치폭은 149sec로 나타났는데 이는 HWE 성장법으로 성장 된 ZnSe 에피막에 대하여 보고된 수치 중 가장낮은 값이다. PL 스펙트럼에서 I2 피크와 DAP 피크의 강도는 높고, SA 피크의 강도는 낮다는 사실로부터 본 연구에서 성장된 ZnSe 에피막의 결정질이 매우 우수함을 확인하였다.