Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.7.1997

EDTA Surface Capped Water-Dispersible ZnSe and ZnS:Mn Nanocrystals  

Lee, Jae-Woog (Department of Chemistry, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Lee, Sang-Min (Department of Chemistry, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Huh, Young-Duk (Department of Chemistry, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Hwang, Cheong-Soo (Department of Chemistry, Center for Photofunctional Energy Materials (GRRC), Dankook University)
Publication Information
Abstract
ZnSe and ZnS:Mn nanocrystals were synthesized via the thermal decomposition of their corresponding organometallic precursors in a hot coordinating solvent (TOP/TOPO) mixture. The organic surface capping agents were substituted with EDTA molecules to impart hydrophilic surface properties to the resulting nanocrystals. The optical properties of the water-dispersible nanocrystals were analyzed by UV-visible and room temperature solution photoluminescence (PL) spectroscopy. The powders were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), and confocal laser scanning microscopy (CLSM). The solution PL spectra revealed emission peaks at 390 (ZnSe-EDTA) and 597 (ZnS:Mn-EDTA) nm with PL efficiencies of 4.0 (former) and 2.4% (latter), respectively. Two-photon spectra were obtained by fixing the excitation light source wavelengths at 616 nm (ZnSe-EDTA) and 560 nm (ZnS:Mn-EDTA). The emission peaks appeared at the same positions to that of the PL spectra but with lower peak intensity. In addition, the morphology and sizes of the nanocrystals were estimated from the corresponding HR-TEM images. The measured average particle sizes were 5.4 nm (ZnSe-EDTA) with a standard deviation of 1.2 nm, and 4.7 nm (ZnS:Mn-EDTA) with a standard deviation of 0.8 nm, respectively.
Keywords
ZnSe; ZnS:Mn; Water-dispersible nanoparticles; EDTA capping; Two-photon spectroscopy;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Analyst 1983, 108, 1067.   DOI
2 Yi, G.; Sun, B.; Yang, F.; Chen, D. J. Mater. Chem. 2001, 11, 2928.   DOI
3 Kumbhokjar, N.; Mahamuni, S.; Leppert, V.; Risbud, S. H. Nanostruc. Mater. 1998, 10, 117.   DOI   ScienceOn
4 Dong, B.; Cao, L.; Su, G.; Liu, W.; Zhai, H. J. Alloys and Comp. 2010, 429, 363.
5 Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Phys. Rev. Lett. 1994, 72, 416.   DOI
6 Breus, V. V.; Heys, C. D.; Nienhaus, G. U. J. Phys. Chem. 2007, 111, 18589.
7 Satzinger, V.; Schmidt, V.; Kuna, L. Micro. Opt. 2008, 17, 6992.
8 Zheng, L.; Zhang, Z. X. Prog. Biochem. Biophys. 2008, 35, 584.
9 Ryczkowski, J. Appl. Suf. Sci. 2005, 252, 813.   DOI
10 Xin, B. P.; We, J.; Guo, L. J. Inorg. Chem. 2009, 25, 774.
11 Melhuish, W. H. J. Phys. Chem. 1961, 65, 229.   DOI
12 Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th ed.; Wiley: 1997; Ch. 10.
13 Kim, J. E.; Hwang, C.-S.; Yoon, S. W. Bull. Kor. Chem. Soc. 2008, 29, 1247.   DOI
14 Revaprasadu, N.; Malik, M. A.; O’Brien, P. J. Mater. Chem. 1998, 8, 1885.   DOI
15 Chestnoy, N.; Hull, R.; Brus, L. E. J. Chem. Phys. 1986, 85, 2237.   DOI
16 Song, K. K.; Lee, S. H. Curr. Appl. Phys. 2001, 1, 169.   DOI
17 Hwang, C. -S.; Cho, I. H. Bull. Kor. Chem. Soc. 2005, 26, 1776.   DOI
18 Hwang, J. M.; Oh, M. O.; Kim, I.; Lee, J. K.; Ha, C.-S. Curr. Appl. Phys. 2005, 5, 31.   DOI
19 Hwang, C.-S.; Lee, N. R.; Kim, Y. A. and Park, Y. B. Bull. Kor. Chem. Soc. 2006, 27, 1809.   DOI
20 Lee, J. H.; Kim, Y. A.; Kim, K. M.; Huh, Y. D.; Hyun, J. W.; Kim, H. S.; Noh, S. J.; Hwang, C. -S. Bull. Kor. Chem. Soc. 2007, 28, 1091.   DOI
21 Mattousi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. J. Am. Chem. Soc. 2000, 122, 12142.   DOI
22 Chan, W. C. W; Nie, S. Science 1998, 281, 2016; Alivisatos, P. Science 1996, 271, 933.   DOI   ScienceOn
23 Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47.   DOI
24 Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P. J. Phys. Chem. B 2001, 195, 8861.
25 Chen, C. C.; Yet, C. P.; Wang, H. N.; Chao, C. Y. Langmuir 1999, 15, 6845.   DOI
26 Mitchell, G. P.; Mirkin, C. A.; Letsinger, R. L. J. Am. Chem. Soc. 1999, 121, 8122.   DOI
27 Xin, R.; Ren, F.; Leng, Y. Mater. Des. 2010, 31, 1691.   DOI
28 Lee, T. M. J. Mater. Sci. 2006, 17, 15.
29 Alivisatos, P. J. Phys. Chem. 1996, 100, 13226.   DOI
30 Goldman, E. R.; Balighian, H.; Mattoussi, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P. J. Am. Chem. Soc. 2002, 124, 6378.   DOI
31 Hines, M. A.; Guyot-Sionnest, P. J. Phys. Chem. B 1998, 102, 3655.   DOI
32 Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nature Biotechnol. 2002, 21, 47.   DOI
33 Milliron, D. J.; Alivisatos, A. P.; Pitois, C.; Edder, C.; Frechet, J. M. J. Adv. Mater. 2003, 15, 58.   DOI
34 Pereiro, R.; Sanz-Medel, A.; Chang, W. H.; Parak, W. J. Mater. Chem. 2007, 17, 1343.   DOI