• Title/Summary/Keyword: ZnS Quantum dot

Search Result 61, Processing Time 0.026 seconds

Eco-Friendly Emissive ZnO-Graphene QD for Bluish-White Light-Emitting Diodes

  • Kim, Hong Hee;Son, Dong Ick;Hwang, Do-Kyeong;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.627-627
    • /
    • 2013
  • Recently, most studies concerning inorganic CdSe/ZnS quantum dot (QD)-polymer hybrid LEDs have been concentrated on the structure with multiple layers [1,2]. The QD LEDs used almost CdSe materials for color reproduction such as blue, green and red from the light source until current. However, since Cd is one of six substances banned by the Restriction on Hazardous Substances (RoHS) directive and classified into a hazardous substance for utilization and commercialization as well as for use in life, it was reported that the use of CdSe is not suitable to fabricate a photoelectronic device. In this work, we demonstrate a novel, simple and facile technique for the synthesis of ZnO-graphene quasi-core.shell quantum dots utilizing graphene nanodot in order to overcome Cd material including RoHS materials. Also, We investigate the optical and structural properties of the quantum dots using a number of techniques. In result, At the applied bias 10 V, the device produced bluish-white color of the maximum brightness 1118 cd/$m^2$ with CIE coordinates (0.31, 0.26) at the bias 10 V.

  • PDF

Development of CdSe/CdS Quantum Dot Co-sensitized ZnO Nanowire Solar Cell

  • Seol, Min-Su;Kim, Hui-Jin;Kim, U-Seok;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.369-369
    • /
    • 2011
  • 양자점 감응형 태양전지는 가시광 영역을 흡수, 이용할 수 있는 광감응 물질로 무기물 양자점을 사용하며, 이 경우 나노미터 크기의 무기물 양자점으로 인한 양자제한 효과 (quantum confinement effect)에 의해 양자점의 사이즈 조절 만으로 밴드갭을 조절할 수 있어 광학적 특성 조절이 용이하며, 하나의 광자를 흡수하여 두개 이상의 전자-정공쌍을 만들 수 있는 (multiple exciton generation) 가능성이 있어 기존 태양전지가 가지는 이론적 한계효율(Shockley-Queisser limit)을 뛰어넘을 수 있다. 본 연구에서는 양자점 및 염료 감응형 태양전지분야에서 가장 많이 사용되고 있는 TiO2 다공성 필름이 아닌, ZnO 나노선 구조를 이용하여 양자점 감응형 태양전지를 제작하였다. ZnO의 경우 TiO2보다 높은 전자이동도를 가지며, 나노선 구조가 바닥전극까지 수직 연결된 1차원의 전자전달경로를 제공하여 결과적으로 광전자 포집에 유리하다. 또한, CdS, CdSe 양자점을 동시에 사용하여 광흡수 범위를 가시광 전 영역으로 확장하였으며, 계단형 밴드구조를 통해 광전자-정공 분리 및 포집을 용이하게 하였다. 더 나아가 전해질의 조성, 나노선의 길이 등 다양한 부분을 조절하면서 각 변수가 소자의 효율에 미치는 영향을 관찰하였다.

  • PDF

Inverted CdSe@ZnS Quantum Dots Light-Emitting Diode using Low-Work Function Polyethylenimine Ethoxylated (PEIE) modified ZnO

  • Kim, Choong Hyo;Kim, Hong Hee;Hwang, Do Kyung;Suh, Kwang S;Park, Cheol Min;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.148-148
    • /
    • 2015
  • Over the past several years, Colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been developed for the future of optoelectronic applications. An inverted-type quantum-dot light-emitting-diode (QDLED), employing low work function organic material polyethylenimine ethoxylated(PEIE) (<10 nm)[1] modified ZnO nanoparticles (NPs) as electron injection and transport layer, was fabricated by all solution processing method, instead of electrode in the device. The PEIE surface modifier incorporated on the top of the ZnO NPs film, facilitates the enhancement of both electorn injection into the CdSe-ZnS QD emissive layer by lowering the workfunction of ZnO from 3.58eV to 2.87eV and charge balance on the QD emitter. In this inverted QDLEDs, blend of poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo) and poly(N,N'-bis(4-butylphenyl)-N,N'-bis(phenyl)benzidine] are used as hole transporting layer (HTL) to improve hole transporting property. At the operating voltage of 7.5 V, the QDLED device emitted spectrally orange color lights with high luminance up to 11110 cd/m2, and showed current efficiency of 2.27 cd/A.[2]

  • PDF

Luminescent Polynorbornene/Quantum Dot Composite Nanorods and Nanotubes Prepared from AAO Membrane Templates

  • Oh, Se-Won;Cho, Young-Hyun;Char, Kook-Heon
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.995-1002
    • /
    • 2009
  • Luminescent polynorbornene (PNB)/quantum dot (CdSe@ZnS; QD) composite nanorods and nanotubes were successfully prepared using anodic aluminum oxide (AAO) membranes of various pore sizes as templates. To protect QDs with high quantum yield from quenching during the phosphoric acid treatment used to remove the AAO templates, chemically stable and optically clear norbornene-maleic anhydride copolymers (P(NB-r-MA)) were employed as a capping agent for QDs. The amine-terminated QDs reacted with maleic anhydride moieties in P(NB-r-MA) to form PNB-grafted QDs. The chemical- and photo-stability of QDs encapsulated with PNB copolymers were investigated by photoluminescence (PL) spectroscopy. By varying the pore size of the AAO templates from 40 to 380 urn, PNB/QD composite nanorods or nanotubes were obtained with a good dispersion of QDs in the PNB matrix.

Nitric Oxide Detection of Fe(DTC)3-hybrizided CdSe Quantum Dots Via Fluorescence Energy Transfer

  • Chang-Yeoul, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.453-458
    • /
    • 2022
  • We successfully synthesize water-dispersible CTAB-capped CdSe@ZnS quantum dots with the crystal size of the CdSe quantum dots controlled from green to orange colors. The quenching effect of Fe(DTC)3 is very efficient to turn off the emission light of quantum dots at four molar ratios of the CdSe quantum dots, that is, the effective covering the surface of quantum dots with Fe(DTC)3. However, the reaction with Fe(DTC)3 for more than 24 h is required to completely realize the quenching effect. The highly quenched quantum dots efficiently detect nitric oxide at nano-molar concentration of 110nM of NO with 34% of recovery of emission light intensity. We suggest that Fe(DTC)3-hybridized CdSe@ZnS quantum dots are an excellent fluorescence resonance energy transfer probe for the detection of nitric oxide in biological systems.

Improvement of Short-Circuit Current of Quantum Dot Sensitive Solar Cell Through Various Size of Quantum Dots (양자점 입도제어를 통한 양자점 감응형 태양전지 단락전류 향상)

  • Ji, Seung Hwan;Yun, Hye Won;Lee, Jin Ho;Kim, Bum-Sung;Kim, Woo-Byoung
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.16-22
    • /
    • 2021
  • In this study, quantum dot-sensitized solar cells (QDSSC) using CdSe/ZnS quantum dots (QD) of various sizes with green, yellow, and red colors are developed. Quantum dots, depending their different sizes, have advantages of absorbing light of various wavelengths. This absorption of light of various wavelengths increases the photocurrent production of solar cells. The absorption and emission peaks and excellent photochemical properties of the synthesized quantum dots are confirmed through UV-visible and photoluminescence (PL) analysis. In TEM analysis, the average sizes of individual green, yellow, and red quantum dots are shown to be 5 nm, 6 nm, and 8 nm. The J-V curves of QDSSC for one type of QD show a current density of 1.7 mA/㎠ and an open-circuit voltage of 0.49 V, while QDSSC using three type of QDs shows improved electrical characteristics of 5.52 mA/㎠ and 0.52 V. As a result, the photoelectric conversion efficiency of QDSSC using one type of QD is as low as 0.53 %, but QDSSC using three type of QDs has a measured efficiency of 1.4 %.

Improved Luminescent Characterization and Synthesis of InP/ZnS Quantum Dot with High-Stability Precursor (고 안정성 전구체를 사용한 InP/ZnS 반도체 나노입자 합성 및 발광 특성 향상)

  • Lee, Eun-Jin;Moon, Jong-Woo;Kim, Yang-Do;Shin, Pyung-Woo;Kim, Young-Kuk
    • Journal of Powder Materials
    • /
    • v.22 no.6
    • /
    • pp.385-390
    • /
    • 2015
  • We report a synthesis of non-toxic InP nanocrystals using non-pyrolytic precursors instead of pyrolytic and unstable tris(trimethylsilyl)phosphine, a popular precursor for synthesis of InP nanocrystals. In this study, InP nanocrystals are successfully synthesized using hexaethyl phosphorous triamide (HPT) and the synthesized InP nanocrystals showed a broad and weak photoluminescence (PL) spectrum. As synthesized InP nanocrystals are subjected to further surface modification process to enhance their stability and photoluminescence. Surface modification of InP nanocrystals is done at $230^{\circ}C$ using 1-dodecanethiol, zinc acetate and fatty acid as sources of ZnS shell. After surface modification, the synthesized InP/ZnS nanocrystals show intense PL spectra centered at the emission wavelength 612 nm through 633 nm. The synthesized InP/ZnS core/shell structure is confirmed with X-ray diffraction (XRD) and Inductively Coupled Plasma - Atomic Emission Spectrometer (ICP-AES). After surface modification, InP/ZnS nanocrystals having narrow particle size distribution are observed by Field Emission Transmission Electron Microscope (FE-TEM). In contrast to uncapped InP nanocrystals, InP/ZnS nanocrystals treated with a newly developed surface modified procedure show highly enhanced PL spectra with quantum yield of 47%.

Study on UV Opto-Electric Properties of ZnS:Mn/ZnS Core-Shell QD

  • Lee, Yun-Ji;Cha, Ji-Min;Yoon, Chang-Bun;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.55-60
    • /
    • 2018
  • In this study, quantum dots composed of $Mn^{2+}$ doped ZnS core and ZnS shell were synthesized using MPA precursor at room temperature. The ZnS: Mn/ZnS quantum dots were prepared by varying the content of MPA in the synthesis of ZnS shells. XRD, Photo-Luminescence (PL), XPS and TEM were used to characterize the properties of the ZnS: Mn/ZnS quantum dots. As a result of PL measurement using UV excitation light at 365 nm, the PL intensity was found to greatly increase when MPA was added at 15 ml, compared to the case with no MPA; the PL peaks shifted from 603 nm to 598 nm. A UV sensor was fabricated by using a sputtering process to form a Pt pattern and placing a QD on the Pt pattern. To verify the characteristics of the sensor, we measured the electrical properties via irradiation with UV, Red, Green, and Blue light. As a result, there were no reactions for the R, G, and B light, but an energy of 3.39 eV was produced with UV light irradiation. For the sensor using ZnS: Mn/ZnS quantum dots, the maximum current (A) value decreased from $4.00{\times}10^{-11}$ A to $2.62{\times}10^{-12}$ A with increasing of the MPA content. As the MPA content increases, the PL intensity improves but the electrical current value dropped because of the electron confinement effect of the core-shell.

Dynamics and Bleaching of Ground State in CdSe/ZnS Quantum Dots

  • Kim, J.H.;Kyhm, K.
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.4
    • /
    • pp.184-187
    • /
    • 2006
  • For resonant excitation of the ground state $1s^e-1S^h_{3/2}$, dynamics of 'the electron-hole pair in a CdSe quantum dot was investigated by degenerate pump-probe measurement. At low e-h pair densities, the decay of $1s^e-1S^h_{3/2}$ state is dominated by radiative recombination. As the number of the electron-hole pairs increases, new decay features become significant. Theoretical comparison suggests this is attributed to the bi-molecular and Auger-type scattering.

The Effects of Oxygen Plasma and Cross-link Process on Quantum-dot Light Emitting Diodes

  • Cho, Nam-Kwang;Kang, Seong Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.215-215
    • /
    • 2014
  • Red color light emitting diodes (LEDs) were fabricated using CdSe/CdZnS quantum dots (QDs). During the device fabrication process, oxygen plasma treatment on the ITO surface was performed to improve the interfacial contact between ITO anode and the hole injection layer. CdSe/CdZnS quantum dots were cross-linked to remove their surrounded organic surfactants. The device shows red emission at 622 nm, which is consistent with the dimension of the QDs (band gap=1.99 eV). The luminance shows 6026% improvement compared with that of LEDs fabricated without oxygen plasma treatment and quantum dots cross-linking process. This approach would be useful for the fabrication of high-performance QLEDs with ITO electrode and PEDOT:PSS hole injection layers.

  • PDF