• Title/Summary/Keyword: ZnS: Cu

Search Result 1,084, Processing Time 0.035 seconds

Effects of Microbial Phytase Supplementation to Diets with Low Non-Phytate Phosphorus Levels on the Performance and Bioavailability of Nutrients in Laying Hens

  • Um, J.S.;Paik, I.K.;Chang, M.B.;Lee, B.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.2
    • /
    • pp.203-208
    • /
    • 1999
  • An 8 week feeding trial was conducted with 864 ISA Brown laying hens, 48 weeks old, to determine if microbial phytase $(Natuphos^{(R)})$ supplementation can reduce non-phytate phosphorus (NPP) level in laying diets. The experiment consisted of four dietary treatments: T1, control diet with 0.26% NPP (0.55% total P) wand no supplementary phytase; T2, 0.21% NPP (0.50% total P) diet with 250 U of phytase/kg of diet; T3, 0.16% NPP (0.45% total P) diet with 250 U of phytase/kg of diet; and T4, 0.11% NPP (0.40% total P) diet with 250 U of phytase/kg of diet. T3 showed the highest egg production and egg weight and the lowest feed conversion while T4 gave the lowest egg production and the highest feed conversion and mortality. Daily feed consumption ranged from 130.4 g (T4) to 132.7 g (T2). T1 and T2 were not significantly different in the production parameters. Eggshell strength, egg specific gravity, and eggshell thickness were not significantly different among treatments. However, broken egg ratio was significantly lower in T2 and T4 than in T1. Retentions of Ca, P, Mg, and Cu were greater in phytase supplemented treatments (T2, T3, and T4) than the control (T1), and those in T3 and T4 were greater than in T2. Excretions of P in phytase supplemented treatments (T2, T3, and T4) were significantly (p<0.05) smaller than in T1 but excretions of N were not significantly different among the treatments. Contents of ash in tibiae were not significantly affected by treatments, but contents of Ca, P, Mg, and Zn was increased and that of Cu decreased by phytase supplementation. It is concluded that the NPP concentration in the diet of Brown layers consuming about 130 g/d of feed can be safely lowered from 0.26% (0.55% total P) to 0.16% (0.45% total P). The excretion of P was reduced by the inclusion of 250 U phytase/kg of diet.

Bronze Production Technology in the Early Iron Age: A comparative study of bronze artifacts recovered from the Hoam-dong site in Chungju and Chongsong-ri in Buyeo (초기철기시대 청동기의 제작기술 - 충주 호암동유적과 부여 청송리유적 출토 청동기의 비교 연구-)

  • Han, Woorim;Hwang, Jinju;Kim, Sojin
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.4
    • /
    • pp.224-233
    • /
    • 2018
  • Thirty-three Early Iron Age bronzes at the sites of Hoam-dong in Chungju and Cheongsong-ri in Buyeo were investigated in order to study the manufacturing technique and the provenance of lead. Chemical analysis using X-ray fluorescence showed that 33 bronzes consist of copper(Cu), tin(Sn) and lead(Pb) served as major elements. Major and minor elemental analyses by EPMA were performed on two mirrors and 2 weapons of the bronzes investigated. The results shows that bronze mirrors from Chungju and Buyeo were high-tin bronzes(> 30 wt%). And 20% of tin and 5% of lead were founded in bronze weapons. Iron, zinc, arsenic, silver, nickel, sulfur and cobalt detected in four bronzes as minor and trace elements. The four bronzes were alloyed considering their function and were not heat treated after casting due to their high tin content. Lead isotope analysis using TIMS indicates that thirty-three bronzes were distributed southern Korea peninsula except Zone 1. As a result, lead raw materials came from various regions in Korean Peninsula not from Gyeongsang-do regions. The manufacturing techniques of bronze ware generalized at this age, and bronze was produced in various sites using raw materials from various sources.

The Effect of Long-term Application of Different Organic Material Sources on Chemical Properties of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 화학성 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Sang-Bok;Lee, Deog-Bae;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.239-253
    • /
    • 1999
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil chemical properties in upland soils. Field experiments were conducted in the loam and sandy loam soils. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The continuous application of human excrement sludge decreased soil pH up to 4.4~5.0, while other compost treatments increased soil pH compared with control plot. The EC increased initially and showed their maximum values at 20days after compost application, and then decreased up to 40 days, thereafter kept a certain level. The available phosphorous accumulated at 0~20cm depth in loam soil, and 0~50cm in sandy loam soil. Annual accumulation rates were 17% higher in sandy loam soil than loam soil. The more compost application rates and times, the higher base saturation percentage increased in upland soils. Four year's application at a rate of $80Mg\;ha^{-1}$ per year increased the base saturation percentage to 87~91% compared with 45% at control plot in the loam soil. While in sandy loam soil only three year's application of same rate increased the base saturation percentage to 81~92% compared with 30.4% at control plot. The average annual increasing rate of base saturation percentage at the same application rates of composts were higher in sandy loam soil by 2.0~3.7 times than in loam soil. The application of compost increased the exchangeable Ca, Mg, and K contents of soils by 2, 2~3, and 3~5 times, respectively, compared with the control. The contents of exchangeable canons were high in surface soil. and decreased with increase of soil depths. In the case of heavy metal content, there were no difference at the application of PMC and CMC but Ni. Fe, Zn, Cu was increased a little when the HES applied, and Ni and Cr was increased application with FISC.

  • PDF

Effect of Waste Nutrient Solution and Fertigation Nutrient Solution on the Growth and Qualities of Tomato Grown by Fertigation (관비재배시 토마토 생육과 품질에 미치는 폐양액과 기존 비료의 효과)

  • Zhang, Cheng Hao;Xu, Zhihao;Kang, Ho-Min;Kim, Il-Seop
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.574-579
    • /
    • 2010
  • Waste nutrient solution (WNS) that was the drained nutrient solution of Horticultural Research Institute of Japan for culture tomato in perlite hydroponics showed $1.9-2.4dS{\cdot}m^{-1}$ of EC and 5.7-7.1 pH from April to July. Although ${NH_4}^+-N$ concentration of WNS decreased remarkably, the other nutrients did not change significantly, as compared with supplied solution. There were no significant differences in plant height, stem diameter, and the other growth characteristics of tomato plants grown by 2 fertigation nutrient solutions; BHF (Bountiful Harvest Fertilizer, 10% of N, 13% of $PO_4$, 13% of K, 0.05% of B, 0.05% of Zn, and 0.0023% of Cu that made in Korea) and Megasol (11% of N, 8% of $PO_4$, 34% of K, 0.032% of Mn, 0.002% of B, 0.048% of Fe, 0.0122% of Zn, and 0.0023% of Cu that made in Belgium.); however, the chlorophyll content of tomato leaf was highest in WNS. The fresh and dry weight of tomato plants were higher in 3 fertigation treatments than irrigation of tap water, while there were no significant differences in fresh and dry weight among the 3 fertigation treatments. The mineral content of tomato leaf also did not show any differences among the 3 fertigation treatments and any regular tendency in all minerals. Total yield, fruit weight and fruit numbers of tomato were higher in WNS, followed by Megasol, BHF and control, although there were not any difference among the 3 fertigation nutrient solution treatments. BER(blossom-end rot)of tomato fruits decreased in fertigation treatments, especially, fruits grown in WNS and BHF showed lower BER. However, the transpiration rate of leaf was higher in control, followed by BHF, WNS and Megasol, The fruit size and soluble solids content was higher in 3 fertigation nutrient treatments than control. These results suggest that WNS can be used for fertigation solution in tomato because yield and quality of tomato fruit grown in WNS fertigation treatment were similar to those in 2 fertigation nutrient solutions treatments(BHF, Megasol).

The Synthetic Study of Environmental Contamination at the Seokdae Municipal Waste Landfill in Pusan (부산 석대 생활폐기물 매립장의 환경오염에 대한 종합적 연구)

  • 김병우;정상용;이민희;이병헌
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.98-103
    • /
    • 2001
  • In order to understand the characteristics of leachate at the Seokdae municipal waste landfill in the Pusan city, the correlation between leachate pollution loading and volume of gas production. concentration of gas and subsidence of ground, the characteristical methos, geochemical analyses and laboratory column tests using samples of gases, leachate and surface soil of Seokdae waste landfill area. Through the analysis of water balance, leachate flow rate and pollution loading were estimated. Geistatistical analysis of four gas components ( $O_2$, C $H_4$, $H_2$S and CO) shows the possibility of ground subsidence around the group of a site with high concentration of gas. From geochemical analyses of leachate, EC and Total-Alkalinity of ground subsidence around the group of a site with high concentration of gas. From geochemical analysis of leachate, Ec and Total-Alkalinity were increased, and Cl, Cr, Mn, Cu, Zn, Cd and Pb were decreassed comparing to the part, and the type of water quality was Na-HC $O_3$ in trilinear diagram. It shows that biodecomposition of municipal wastes continues actively. From the analysis of water balance, the total leachate flow rate is about 465.11㎥/day and pure pollution loading of Cl, Mn and Fe are estimated to 223.8kg/day, 0.2kg/day, 0.3kg/day, respectively. The laboratory column test of residual soil and landfill soil shows 0.206cm and 0.019cm for linear velocity(equation omitted), 0.234 $\textrm{cm}^2$/min and 0.018$\textrm{cm}^2$/min for diffusion coefficient ( $D_{ι}$), and 1.136cm and 0.095cm longitudinal dispersion index ($\alpha$$_{ι}$), respective]y. It demonstrates that the delay time of contamination for residual soil is shorter than that of landfill soil.

  • PDF

Effects of Adenophora triphylla Ethylacetate Extract on mRNA Levels of Antioxidant Enzymes in Human HepG2 Cells (인간 HepG2 Cell에서 항산화 효소의 mRNA 발현에 대한 잔대 에틸아세테이트 추출물 효과)

  • Choi, Hyun-Jin;Kim, Soo-Hyun;Oh, Hyun-Taek;Chung, Mi-Ja;Cui, Cheng-Bi;Ham, Seung-Shi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.10
    • /
    • pp.1238-1243
    • /
    • 2008
  • The root of Adenophora triphylla is widely used as traditional herbal medicine in Korea. We studied its effects on sodium nitroprusside (SNP) cytotoxicity and antioxidant genes expression in HepG2 cells. To study whether Adenophora triphylla ethylacetate extract (ATea) inhibited NO-induced cell death, HepG2 cells were preincubated for 24 hr with 50 and 100 $\mu$g/mL ATea followed by 24-hr exposure to 0.5 mM SNP (exogenous NO donor). No-induced cytotoxicity was inhibited by pretreatment of ATea, as assessed by mitochondrial dehydrogenase activity (MTT assay). We further investigated the effects of ATea on mRNA levels of various enzymes of the antioxidant system such as Cu, Zn superoxide dismutase (SOD 1), Mn SOD (SOD 2), glutathione peroxidase (GPx), catalase and several enzymes of the glutathione metabolism [glutathione reductase (GR), $\gamma$-glutamyl-cystein synthetase (GCS), glutathione-S-transferase (GST), $\gamma$-glutamyltranspeptidase ($\gamma$-GT), glucose-6-phosphate dehydrogenase (G6PD)] by RT-PCR. CAT, GCS, GR and G6PD mRNA levels were increased after treatment with ATea. The SOD 1, SOD 2, GPx, GST and $\gamma$-GT mRNA levels were not affected in ATea-treated HepG2 cells. We concluded that ATea have an indirect antioxidant effects, perhaps via induction of CAT, GCS, GR and G6PD.

On the Components of Edible Marine Algae in Korea -I. The Components of Several Edible Brown Algae- (한국산(韓國産) 식용(食用) 해조류(海藻類)의 성분(成分)에 관(關)한 연구(硏究) -I. 수종(數種) 식용(食用) 갈조류(褐藻類)의 구성(構成) 성분(成分)에 대(對)하여-)

  • Lee, In-Kyu;Shim, Sang-Chil;Cho, Han-Ok;Rhee, Chong-Ouk
    • Applied Biological Chemistry
    • /
    • v.14 no.3
    • /
    • pp.213-220
    • /
    • 1971
  • In order to investigate chemical components of edible marine algae in Korea, the present work is carried out with ten edible and two non-edible species of brown algae, collected from Cheju-island during October, 28-30 in 1970. Among the general components, water content is about 14-16% to dry weight and the crude protein about 16%, which are almost similar in content compared with several non-cultivate edible land plants. The content of crude fat is about 0.7-2.0%, and that of crude fiber about 3-8%, while the content of crude ash is 9.17-16.89%. The last one is more than two times in content compared with the land plants. The reducing sugar is about 0.27-2.49% in general. On the other hand, among the minerals Ca content is the most abundant, 1.73-2.51%, and the next is S, 1.0-1.8%. Mg and I are around 0.1-1%, while K and Na are about 1% in content. Among the micro-elements, Fe and Zn are about 0.01-0.03%, and Cu and Mn 0.001-0.005% in content. There is no special significant difference in chemical components between the edible and non-edible species of brown algae. Moreover, so far as the present investigation is concerned, there can be found no significant inter-species relationship on the taxonomical or phylogenetical points of view, considering their components.

  • PDF

The Effect of Long-term Application of Different Organic Material Sources on Chemical Properties of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 화학성 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Sang-Bok;Lee, Deog-Bae;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.416-431
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil chemical properties in upland soils. Field experiments were conducted in the loam and sandy loam soils. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The continuous application of human excrement sludge decreased soil pH up to 4.4~5.0, while other compost treatments increased soil pH compared with control plot. The EC increased initially and showed their maximum values at 20days after compost application, and then decreased up to 40 days, thereafter kept a certain level. The available phosphorous accumulated at 0~20cm depth in loam soil, and 0~50cm in sandy loam soil. Annual accumulation rates were 17% higher in sandy loam soil than loam soil. The more compost application rates and times, the higher base saturation percentage increased in upland soils. Four year's application at a rate of $80Mg\;ha^{-1}$ per year increased the base saturation percentage to 87~97% compared with 45% at control plot in the loam soil. While in sandy loam soil only three year's application of same rate increased the base saturation percentage to 81~92% compared with 30.4% at control plot. The average annual increasing rate of base saturation percentage at the same application rates of composts were higher in sandy loam soil by 2.0~3.7 times than in loam soil. The application of compost increased the exchangeable Ca, Mg, and K contents of soils by 2, 2~3, and 3~5 times, respectively, compared with the control. The contents of exchangeable cations were high in surface soil, and decreased with increase of soil depths. In the case of heavy metal content, there were no difference at the application of PMC and CMC but Ni, Fe, Zn, Cu was increased a little when the HES applied, and Ni and Cr was increased application with FISC.

  • PDF

Nutrient Composition and Heavy Metal Contents of Matured Livestock Liquid Fertilizer in Korea (국내 가축분뇨 부숙액비의 비료성분 및 중금속 함량 분포특성)

  • Kang, Tak-Won;Halder, Joshua Nizel;Kim, Soo-Ryang;Yoon, Young-Man;Lee, Myung-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.31-39
    • /
    • 2017
  • From July to August 2013, liquid fertilizers produced at 180 liquid manure public resource centers and liquid fertilizer distribution centers were collected. The maturity of liquid fertilizers was measured using the mechanical maturity measurement device. The nutrient contents (nitrogen, phosphorus, and potassium), physicochemical properties, and heavy metal content of 46 liquid fertilizers were investigated in this study. We used a matured liquid fertilizer with a total number of 46, with number of 7 for Gyeonggi-do, 3 for Chungcheongbuk-do, 2 for Chungcheongnam-do, 13 for Jeollabuk-do, 5 for Jeollanam-do, 3 for Gyeongsangbuk-do, 11 for Gyeongsangnam-do, 1 for Daejeon, and 1 for Jeju-do. The physicochemical properties were as follows: pH 8.0, EC 11.6 mS/cm, SS 5,188 mg/L, TKN 847mg/L, ${{NH_4}^+}-N$ 317 mg/L, ${{NO_3}^-}-N$ 170 mg/L, Org-N 360 mg/L, TP 193 mg/L, and TK 2,557 mg/L. The total amount of NPK was 3,596 mg/L. The total amount of N-P-K was as follows: a number of 2 at 1,000-2,000 mg/L (4%), a number of 17 at 2,000-3,000mg/L (37%), a number of 11 at 3,000-4,000mg/L (24%), and a number of 16 at 4,000mg/L or more (35%). Thus, 41% of the mature liquid fertilizers were below the official standard of commercial fertilizer (livestock manure liquid fertilizer) (0.3% of the total amount of N-P-K). Most of the N-P-K total amount showed non-uniform characteristics of low nitrogen and low phosphoric acid due to the potassium concentration. The average heavy metal content in the matured liquid fertilizer was as follows: As, not detected; Cd, 0.01 mg/kg; Hg, not detected; Pb, 0.02 mg/kg; Cr, 0.14 mg/kg; Cu, 6.89 mg/kg; Ni, 0.44 mg/kg; and Zn, 20.70 mg/kg. Thus, the official standard of commercial fertilizer was satisfied in all categories, indicating a safe level.

Risk Analysis for the Harvesting Stage of Tomato Farms to Establish the Good Agriculture Practices(GAP) (GAP 모델 확립을 위한 토마토 농장 수확단계의 위해요소 조사 및 분석)

  • Lee, Chae-Won;Lee, Chi-Yeop;Heo, Rok-Won;Kim, Kyeong-Yeol;Shim, Won-Bo;Shim, Sang-In;Chung, Duck-Hwa
    • Journal of agriculture & life science
    • /
    • v.46 no.4
    • /
    • pp.141-153
    • /
    • 2012
  • Samples collected from six tomato farms(A, B, C : soil culture, D, E, F : Nutriculture) located in Gyeongsangnam-do were tested for the analyses of biological(sanitary indications, major foodborne pathogens, fungi), chemical(heavy metals, pesticides) and physical hazards. The highest levels of total bacteria(7.5 log CFU/g) and coliforms(5.0 log CFU/g) in soil culture farms were higher than those of nutriculture farms(total bacteria: 2.5 log CFU/mL, coliforms: 0.6 log CFU/mL). In crops and personal hygiene soil culture farms showed a slightly higher contamination levels. From all farms, the levels of fungi in soil farms were higher than those of nutrient solution. In case of major pathogens, Bacillus cereus and Staphylococcus aureus were detected in all sample with the exception of nutrient solution. Meantime, Escherichia coli, Listeria monocytogenes, E.coli O157 and Salmonella spp. were not detected. For airborne bacteria, soilculture farms showed less contamination than nutriculture farms. A piece of glass and can was confirmed asphysical hazards. Heavy metal(Cd, Pb, Cu, Cr, Hg, Zn, Ni and As) and pesticide residues as chemical hazards were detected, but their levels were lower than the regulation limit. These results demonstrate that potential hazards on harvesting stage of tomato fam were exposed. Therefore, proper management is needed to prevent biological hazards due to cross-contamination, while physical and chemical hazards were in appropriate levels based on GAP criteria.