• Title/Summary/Keyword: ZnO thin Film

Search Result 1,206, Processing Time 0.028 seconds

Luminescence properties of ZnO thin films depending on the variation of the film thickness (ZnO 박막의 두께변화에 따른 광학적 특성변화 연구)

  • 심은섭;강홍성;강정석;김종훈;이상렬
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.135-138
    • /
    • 2001
  • We report the structural ,optical and electrical properties of ZnO thin films depending on the variation of the film thickness. The properties of the films deposited on sapphire (001) substrates using a pulsed laser deposition technique (PLD) were characterized with XRD, hall measurement and photoluminescence (PL). In our study, the increase of the thickness of ZnO thin films shows the improvement of the structural and optical properties. The electric properties of the films were also well matched with the structural and optical properties

  • PDF

A Study on the Photon Energy Characteristics of ZnO Thin Film According to Coating Thickness (ZnO 박막의 증착 두께에 따른 Photon Energy 특성에 관한 연구)

  • Lee, Jung-Il;Seo, Jang-Soo;Jung, Sung-Gyo;Kim, Byung-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.75-81
    • /
    • 2003
  • This study evaporates ZnO layer thickness differently with RF sputtering method on Si Wafer(n-100). This study is performed to examine the characteristics of photon energy and dielectric loss according to the thickness of ZnO and increase the reliability and reproduction of ZnO thin film. It is confirmed that the variation of electric Permittivity by frequency is resulted from the formation of particles within thin film, the particle size and the polarization on grain boundary. Peak of electric Permittivity value of thin film has slower and less value in early low wavelength by the coulomb force involved in carrier combination according to the increase of frequency. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant $({\varepsilon}_1{\varepsilon}_2)$ has larger peak values as it’s thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

A Study on Wet Etch Behavior of Zinc Oxide Semiconductor in Acid Solutions

  • Seo, Bo-Hyun;Lee, Sang-Hyuk;Jeon, Jea-Hong;Choe, Hee-Hwan;Lee, Kang-Woong;Lee, Yong-Uk;Seo, Jong-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.926-929
    • /
    • 2007
  • A significant progress has been made in the characterization of zinc oxide (ZnO) semiconductor as a new semiconductor layer instead of amorphous Si semiconductor used in thin film transistor due to its high electron mobility at low deposition temperature which is quite suitable for flexible display and OLED devices. The wet pattering of ZnO is another important issue with regard to mass production of ZnO thin film transistor device. However, the wet behavior of ZnO thin film in aqueous wet etching solutions conventionally used un TFT industry has not been reported yet, in this work, wet corrosion behavior of RF magnetron sputtered ZnO thin film in various wet solutions such as phosphoric and nitric acid solutions was studied using by electrochemical analysis. The effects of deposition parameters such as RF power and oxygen partial pressure on corrosion rate are also examined.

  • PDF

The Photon Energy Characteristics of ZnO Thin Film Fabricated by RF Sputtering (RF Sputtering으로 제작한 ZnO 박막의 Photon Energy 특성)

  • Kim, Byung-In;Kim, Won-Bae;Chung, Seong-Gyo;Kim, Duck-Tae;Choi, Young-Il;Kim, Hyung-Gon;Song, Chan-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.08a
    • /
    • pp.73-79
    • /
    • 2002
  • This study evaporates ZnO layer thickness' differently with RF sputtering method on Si Wafer(n-100). This study is performed to examine the characteristics of photon energy and dielectric loss according to the thickness of ZnO and increase the reliability and reproduction of ZnO thin film. It is confirmed that the variation of electric Permittivity by frequency is resulted from the formation of particles within thin film, the particle size and the polarization on grain boundary. Peak of electric Permittivity value of thin film has slower and less value in early low wavelength by the coulomb force involved in carrier combination according to the increase of frequency. Reversal of electric Permittivity values is induced by dipole polarization shown in the dielectric of thin film. Complex electric constant $({\varepsilon}_1,{\varepsilon}_2)$ has larger peak values as it's thickness is thinner and then it is larger according to the increase of frequency. Electric Permittivity by photon energy has large value in imaginary number and is reduced exponentially by the increase of carrier density according to that of photon energy.

  • PDF

ZnNiO thin films deposited by r.f. magnetron sputtering method (RF Magnetron Sputtering법으로 증착된 ZnNiO박막의 특성)

  • 오형택;이태경;김동우;박용주;박일우;김은규
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.4
    • /
    • pp.269-274
    • /
    • 2003
  • The electrical, optical and structural properties of ZnNiO thin _ films deposited on Si substrates using rf-magnetron sputtering method have been investigated before and after the thermal annealing processes. The crystallinity of the ZnNiO thin film become degraded with increasing the Ni contents. This is mainly because the lattice of the thin film was expanded due to the oxygen-deficient conditions. Concerning the electrical properties of the thin film, the carrier concentration increases ($6.81\times10^{14}\textrm{cm}^{-2}$) and Hall mobility decreases (36.3 $\textrm{cm}^2$/Vㆍs) with higher doping concentration of Ni. However, the carrier concentration and Hall mobility became low ($1.10\times10^{14}\textrm{cm}^2$ and high (209.6 $\textrm{cm}^2$/Vㆍs), respectively, after the thermal annealing process at $1000 ^{\circ}C$. We also observed a strong luminescene center peaking at 546 nm in photoluminescence spectra, which was caused by a deep level center in the ZnO band gap with oxygen deficient ZnNiO structure.

Effects of Substrate Temperature on the Microstructure and Photoluminescence Properties of ZnO Thin Films by Atomic Layer Deposition (ZnO 성장을 위한 Atomic Layer Deposition법에서 공정온도가 박막의 구조적 및 광학적 특성에 미치는 영향)

  • Lim, Jong-Min;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.15 no.11
    • /
    • pp.741-744
    • /
    • 2005
  • Atomic layer deposition (ALD) is a very promising deposition technique for ZnO thin films. However, there have been very few reports on ZnO grown by ALD. Effects of substrate temperature in both ALD and post annealing on the microstructure and PL properties of ZnO thin films were investigated using X-ray diffraction, photoluminescence, and scanning electron microscopy. The temperature window of ALD is found to be between $130-180^{\circ}C$. The growth rate of ZnO thin film increases as the substrate temperature increases in the temperature range except the temperature window. The crystal quality depends most strongly on the substrate temperature among all the growth parameters of ALD. The crystallinity of the film is improved by increasing the growth thine per ALD cycle or doing post-annealing treatment. The grain size of the film tends to increase and the grain shape tends to change from a worm-like longish shape to a round one as the annealing temperature increases from $600^{\circ}C\;to\;1,000^{\circ}C$.

The Characteristic on Electrical Resistivity of Zno film by Ramped method (선택적 증착에 의해서 제작한 ZnO 박막의 전기저항률 특성)

  • Lee, Woo-Sun;Choi, Kwon-Woo;Cho, Joon-Ho;Park, Jin-Seong;Seo, Yong-Jin;Kim, Sang-Yong;Chung, Yong-Ho;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.26-29
    • /
    • 2001
  • ZnO thin film had been deposited on the glass by Evaporation Ramped method. and electrical and resistivity were investigated. Evaporation gas($O_{2}$,) pressure was 10mTorr~100mTorr, chamber pressure was $2{\times}10^{-5}$, and then ZnO film were deposited. AI-doped ZnO thin film had the lowest resistivity ($1{\times}10^{4}\;{\Omega}{\cdot}cm$), and then carrier concentration and Hall mobility were$6.27{\times}10^{20}\;cm^{3}$ and $22.04 cm^{2}/V{\cdot}s$, respectively. When ZnO film had been deposited by Ramp6ed method compared with normal method and investigated resistivity.

  • PDF

Photoluminescence of ZnO:Er Thin Film Phosphors Deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 증착한 ZnO:Er 박막형광체의 발광 특성)

  • Song, Hyun-Don;Kim, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.401-407
    • /
    • 2006
  • ZnO is well-known as a promising material for optical communication systems and electronic displays. ZnO:Er thin films were deposited on c-plane sapphire substrates by rf magnetron sputtering, and the effects of sputtering parameters and the annealing conditions on the luminescence in the visible range were investigated. Luminescent properties depended on the crystallinity of films and annealing atmosphere. Highly c-axis oriented ZnO:Er films showed a strong emission band at 465 nm and a weak emission at 525 nm due to the energy transition of $^{4}I_{15/2}-^{4}F_{5/2}\;and\;^{4}I_{15/2}-^{2}H_{11/2}$, respectively. ZnO:Er thin films annealed at air atmosphere were superior to those annealed in $H_2$ in photoluminescence intensity.

Structure and Electrical Properties of P-doped ZnO Thin Films with Annealing Temperatures (열처리 온도에 따른 P-doped ZnO 박막의 구조적 및 전기적 특성)

  • Han, Jung-Woo;Yoon, Yung-Sup;Kang, Seong-Jun;Joung, Yang-Hee
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.501-502
    • /
    • 2008
  • In this study, P-doped ZnO thin films were prepared on sapphire substrates by pulsed laser deposition and annealing method. The electrical properties were investigated as a function of annealing temperatures at a fixed oxygen pressure. The XRD measurement showed that p-doped ZnO thin films were c-axis oriented. The Hall measurement showed that p-type ZnO thin film was observed. The carrier concentration of $1.18{\times}10^{16}cm^{-3}$ and the mobility of $0.96\;cm^{-3}/Vs$ were obtained for the P-doped ZnO thin film fabricated annealing temperature $850^{\circ}C$.

  • PDF

Fabrication and Characteristics of ZnO:In Thin Film $NH_3$ Gas Sensor (ZnO:In 박막 $NH_3$ 가스센서의 제작 및 특성)

  • Kim, Jin-Hae;Jun, Choon-Bae;Park, Ki-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.274-282
    • /
    • 1999
  • The In doped ZnO(ZnO:In)thin films sensitive to $NH_3$ gas were prepared by the double layer depositions of In film by vacuum evaporation and ZnO film by rf magnetron sputtering method onto a $SiO_2$/Si wafer substrate, and subsequent heat treatment process. The structural and electrical characteristics of the ZnO:In thin films were studied as a function of heat treatment temperature by x-ray diffraction, scanning electron microscope and 4 point probing method. And the dependence of the sensitivity, the selectivity and the time response of the thin films on heat treatment temperature was investigated. The thin film heat-treated at $400^{\circ}C$ showed the highest sensitivity of 140% at an operating temperature of $300^{\circ}C$. The sensitivity towards CO, $NO_x$, gases observed in the same temperature.

  • PDF