• 제목/요약/키워드: ZnO photoluminescence

검색결과 392건 처리시간 0.029초

Ag가 코팅된 ZnO nanorod 구조의 광학적 특성 연구

  • 고영환;이동훈;유재수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.209-209
    • /
    • 2010
  • 금(Au) 또는 은(Ag) 금속 나노입자의 모양, 크기, 분포 상태를 조절하여 가시광선과 적외선, 자외선 영역에서 강한 표면 플라즈몬 효과을 이용할 수 있는데, 최근 이러한 금속 나노입자의 표면플라즈몬 효과를 이용하여 태양광 소자의 성능을 향상시키는 연구가 매우 활발하게 이루어지고 있다. 그 중, 높은 효율과 낮은 제작비용 그리고 간단한 공정과정의 장점을 갖고 있어서 크게 주목 받고 있는 염료감응태양전지에서도 금(Au) 또는 은(Ag) 금속 나노입자을 이용하기 위한 많은 연구가 진행되고 있다. 그 예로, Au가 코팅된 $TiO_2$ 기반의 염료감응태양전지구조를 제작하여, 입사된 빛이 표면플라즈몬 효과를 통해, Au에서 여기된 전자들이 Au/$TiO_2$ 사에의 schottky 장벽을 통과하여 $TiO_2$의 전도대 전자들의 밀도가 증가하여, charge carrier generating rate을 높여 소자의 광변환 효율의 향상을 증명하였다. 이에 본 연구에서는, $TiO_2$보다 높은 전자 이동도(mobility)와 직선통로(direct path way)의 장점을 갖고 있는 ZnO nanorod에서의 charge carrier generating rate을 높일 수 있도록, 비교적 가격이 저렴한 Ag nanoparticle을 코팅하였다. ZnO nanorod 제작은 낮은 온도에서 간단하게 성장시킬 수 있는 hydrothermal 방법을 이용하였다. 기판위에 RF magnetron 스퍼터를 이용하여 AZO seed layer를 증착한 후, zinc nitrate $Zn(NO_3)_2{\cdot}6H_2O$과 hexamethylentetramines (HMT)으로 혼합된 용액을 사용해 ZnO nanorods를 성장시켰다. 이 후, Ag를 형성할 수 있도록 열증기증착법을 이용하여 코팅하였다. Ag의 증착시간에 따른 ZnO nanorods에서의 코팅된 구조와 형태를 관찰하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 측정하였으며, 결정성을 조사하기 위해 X-ray diffraction (XRD)을 이용하여 분석하였다. 또한 입사된 빛에 의해, 여기된 ZnO 전도대 전자들이 다시 재결합을 통해 방출되는 photoluminescence 양을 scanning PL 장비를 통해 측정하여 Ag가 코팅된 ZnO nanorod의 광특성을 분석하였다.

  • PDF

Effects of B Doping on Structural, Optical, and Electrical Properties of ZnO Nanorods Grown by Hydrothermal Method

  • Kim, Soaram;Nam, Giwoong;Park, Hyunggil;Yoon, Hyunsik;Kim, Byunggu;Kim, Jin Soo;Kim, Jong Su;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.337-337
    • /
    • 2013
  • ZnO seed layers were deposited on a quartz substrate using the sol-gel method, and B-doped ZnO (BZO) nanorods with different B concentrations ranging from 0 to 2.5 at.% were grown on the ZnO seed layers by the hydrothermal method. The structural, optical, electrical propertiesof the ZnO and BZO nanorods were investigated using field-emission scanning electron microscopy, X-ray diffraction (XRD), photoluminescence (PL), ultraviolet-visible spectroscopy, and hall effect. The ZnO and BZO nanorods grew well aligned on the surface of the quartz substrates. From the XRD data, it can be seen that the B doping is responsible for the distortion of the ZnO lattice. The PL spectra show near-band-edge emission and deep-level emission, and they also show that B doping significantly affects the PL properties of ZnO nanorods. The optical band gaps are changed by B doping, and thus the Urbach energy value changed with the optical band gap of the ZnO nanorods. From the hall measurements, it can be observed that the values of electrical resistivity, carrier concentration, and mobility are changed by B doping.

  • PDF

RF 마그네트론 스퍼터링 방법으로 상온에서 유리기판 위에 성장시킨 ZnO의 성질에 미치는 Ga 도핑 효과 (Effect of Ga-doping on the properties of ZnO films grown on glass substrate at room temperature by radio frequency magnetron sputtering)

  • 김금채;이지수;이수경;김도현;이성희;문주호;전민현
    • 한국진공학회지
    • /
    • 제17권1호
    • /
    • pp.40-45
    • /
    • 2008
  • 유리기판 위에 약 500 nm 의 두께로 성장된 ZnO층의 구조적, 광학적, 전기적 성질에 미치는 갈륨도핑의 영향에 대하여 연구 하였다. 다결정 ZnO 와 GZO 층은 상온에서 radio frequency magnetron sputtering 법을 사용하여 성장되었다. 투과전자현미경 (TEM)과 x-ray 회절분석 (XRD)에 의하면, 갈륨이 도핑된 ZnO 박막의 결정성은 ZnO에 비하여 향상되었고 (002)방향을 따라 우선성장 되었음이 발견되었다. GZO 박막의 투과도는 가시광 영역에서 ZnO 박막에 비해 약 10% 정도 향상된 것으로 나타났다. PL 분석에 따르면, NBE emission 세기와 DL emission 세기의 비는 GZO 와 ZnO의 경우 각각 2.65:1 과 1.27:1로 나타났다. GZO와 ZnO의 비저항은 각각 1.27과 1.61 $\Omega{\cdot}cm$로서 GZO의 전기전도도가 높았다. GZO 와 ZnO의 캐리어농도는 각각 $10^{18}$ and $10^{20}cm^2$/Vs으로 측정되었다. 본 실험결과 따르면, Ga 도핑으로 인해 ZnO 박막의 전기적, 광학적, 구조적 특성이 향상되었음을 알 수 있었다.

고상법에 의한 Zn2SiO4:Mn2+녹색 형광체의 제조와 특성에 관한 연구 (Preparation and Characterization of Zn2SiO4:Mn2+ Green Phosphor with Solid State Reaction)

  • 유현희;;원형일;원창환
    • 한국재료학회지
    • /
    • 제21권6호
    • /
    • pp.352-356
    • /
    • 2011
  • [ $Zn_{2(1-x)}Mn_xSiO_4$ ]$0.07{\leq}x{\leq}0.15$) green phosphor was prepared by solid state reaction. The first heating was at $900^{\circ}C-1250^{\circ}C$ in air for 3 hours and the second heating was at $900^{\circ}C$ in $N_2/H_2$(95%/5%) for 2 hours. The size effect of $SiO_2$ in forming $Zn_2SiO_4$ was investigated. The temperature for obtaining single phase $Zn_2SiO_4$ was lowered from $1100^{\circ}C$ to $1000^{\circ}C$ by decreasing the $SiO_2$ particle size from micro size to submicro size. The effect of the activators for the Photoluminescence (PL) intensity of $Zn_2SiO_4:Mn^{2+}$ was also investigated. The PL intensity properties of the phosphors were investigated under vacuum ultraviolet excitation (147 nm). The emission spectrum peak was between 520 nm and 530 nm, which was involved in green emission area. $MnCl_2{\cdot}4H_2O$, the activator source, was more effective in providing high emission intensity than $MnCO_3$. The optimum conditions for the best optical properties of $Zn_2SiO_4:Mn^{2+}$ were at x = 0.11 and $1100^{\circ}C$. In these conditions, the phosphor particle shape was well dispersed spherical and its size was 200 nm.

Synthesis and Characterization of SiO2-Sheathed ZnSe Nanowires

  • Kim, Hyun-Su;Jin, Chang-Hyun;A,, So-Yeon;Lee, Chong-Mu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권2호
    • /
    • pp.398-402
    • /
    • 2012
  • ZnSe/$SiO_2$ coaxial nanowires were synthesized by a two-step process: thermal evaporation of ZnSe powders and sputter-deposition of $SiO_2$. Two different types of nanowires are observed: thin rod-like ones with a few to a few tens of nanometers in diameter and up to a few hundred of micrometers in length and wide belt-like ones with a few micrometers in width. Room-temperature photoluminescence (PL) measurement showed that ZnSe/$SiO_2$ coaxial nanowires had an orange emission band centered at approximately 610 nm. The intensity of the orange emission from the $SiO_2$-sheathed ZnSe nanowires was enhanced significantly by annealing in a reducing atmosphere whereas it was degraded by annealing in an oxidizing atmosphere. The origins of the PL changes by annealing are discussed based on the energy-dispersive X-ray spectroscopy analysis results.

온도 변화에 따른 ZnO 박막에 대한 PL 연구 (PL Study on the ZnO Thin Film with Temperatures)

  • 조재원
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.83-86
    • /
    • 2013
  • The optical properties of ZnO thin film have been studied using photoluminescence(PL) spectroscopy with the change of sample temperatures from 10 K to 290 K. The spectrum at 10 K showed the characteristic emission lines of ZnO which were as follows: free exciton(FX) at 3.369 eV, neutral donor-bound exciton($D^0X$) at 3.360 eV, two electron satellite(TES) at 3.332 eV, $D^0X$-1LO at 3.289 eV, and donor-acceptor pair(DAP) transiton at 3.217 eV. From the spectral evolution with temperatures, two features could be identified as temperature went higher: (1) the bound excitons changed gradually into free excitons, (2) DAP turned into free electron-acceptor transition(e,$A^0$). The PL intensity of free exciton increased with the increase of temperatures, which was accompanied by the decrease of the intensity of bound excitions and bound excition-related transitons such as TES and $D^0X$-1LO. At 80 K DAP transition disappeared, while (e,$A^0$) transition started to appear at 30 K.

Structural analysis and photoluminescent study of thin film rhombohedral zinc orthosilicate doped with manganese

  • Yoon, Kyung-Ho;Kim, Joo-Han
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.114-114
    • /
    • 2010
  • In this study, structural properties and photoluminescent characteristics of thin film rhombohedral zinc orthosilicate doped with manganese ($Zn_2SiO_4:Mn$) were investigated. The $Zn_2SiO_4:Mn$ films showed a pronounced absorption edge in the near ultraviolet wavelength region and a high optical transparency in the visible spectral range. The maximum transmittance reached 0.922 at 597 nm, which was very close to the transmittance of the fused quartz substrate alone (0.935). The $Zn_2SiO_4:Mn$ films were composed of rhombohedral polycrystalline grains with random crystallographic orientation. The broad-band photoluminescence emission peaked at around 525 nm was observed from the $Zn_2SiO_4:Mn$ films, which was ascribed to the radiative relaxation from the $^4T_1$ lowest excitation state to $^6A_1$ ground state of 3d5 electrons in divalent manganese ion. The excitation band exhibited a peak maximum at 259 nm in the near ultraviolet region, which was considered to be associated with the charge transfer transition of divalent Mn ion in the $Zn_2SiO_4$ system.

  • PDF

Enhanced Optical Properties of Au Nanoparticles/ZnO Nanowires Fabiracted by X-ray Induced Wet Process

  • 이무성;강현철
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.318.1-318.1
    • /
    • 2014
  • Metal nano-crystals have been received much attentions owing to their excellent catalytic property and surface plasmon effect. In the last decade, many studies on synthesizing well-dispersive nanoparticles and on understanding their distinct physical properties have been performed. There were tremendous reports revealing the electrochemical activities and enhancement of surface plasmonic effect were dependent mainly on the size, shape, and composition. So far, most fabrication methods have been based on vacuum based deposition techniques, such as chemical vapor deposition and electron-beam evaporation, and then annealed them to transform into the nanoparticles. Recently, there were several reports regarding to the photoinduced nano-crystal synthesis as an effective way to produce the metal nanoparticles. In this study, we report synchrotron x-ray mediated synthesis of Au nanoparticles on ZnO nanowires. ZnO nanowires were fabricated by hydrothermal method, and then they were dip into a solution having Au clusters. Detailed structural evolution of Au nanoparticles was investigated using scanning electron microscopy and photoluminescence measurements. The results on formation of well-dispersive Au nanoparticles on ZnO nanowires will be presented.

  • PDF

Enhanced Field Emission Properties of Strain controlled ZnO Nanowire Arrays Synthesized by Employing Substrate Hanging Method

  • Raghavan, C.M.;Yan, Changzeng;Patole, Shashikant P.;Yoo, J.B.;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.576-576
    • /
    • 2012
  • High quality single crystalline strain controlled wurtzite ZnO nanowire arrays have been grown on conductive silicon and ITO substrates by a facile hydrothermal method. The diameter of the nanowires was found to be less than 90 nm approximately for both of the two kinds of substrates. The quality of the ZnO nanowire arrays is dramatically improved by hanging the substrate above from the bottom of the Teflon lined autoclave. The structural investigation indicates the preferential orientation of the nanowire along c-axis. In order to make the convincible comparison, the photoluminescence property of the nanowire arrays grown under different conditions are measured, the sharp near band edge emission from PL, low turn-on voltage ($1.9V/{\mu}m$) from field emission measurement and Fowler-Nordheim plot was investigated from ZnO nanowire arrays grown by proposed substrate hanging method.

  • PDF

수소 플라즈마 처리를 거친 ZnO 박막에 대한 PL 연구 (PL Study on ZnO Thin Films After H-plasma Treatment)

  • 조재원;이석주
    • 한국전기전자재료학회논문지
    • /
    • 제28권1호
    • /
    • pp.17-20
    • /
    • 2015
  • The physical effects of H-plasma treatment on ZnO thin film have been studied using photoluminescence(PL) spectroscopy. Four characteristic peaks have been identified: (i) $D^0X$ peak (neutral donor-bound exciton), showing relatively small integrated intensity after H-plasma treatment, indicates that H-plasma passivates the neutral donors in ZnO at low temperatures. The rapid decrease in the integrated intensity of the peak as the temperature goes up is considered to be due to the ionization of neutral donors. (ii) H-related complex-bound exciton peak appears at the low temperatures (10 K~80 K) after H-plasma treatment, showing the same thermal evolution as $D^0X$ peak. (iii) FX (free exciton) peak starts to show up at 60 K and grows more and more as the temperature goes up, which is considered to be related to the increase in free electron concentration in the film. (iv) violet band is intensified after H-plasma, which means more defects and impurities are generated by H-plasma process.