Browse > Article
http://dx.doi.org/10.5757/JKVS.2008.17.1.040

Effect of Ga-doping on the properties of ZnO films grown on glass substrate at room temperature by radio frequency magnetron sputtering  

Kim, G.C. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Lee, J.S. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Lee, S.K. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Kim, D.H. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Lee, S.H. (Department of Materials Science and Engineering, Yonsei Univeristy)
Moon, J.H. (Department of Materials Science and Engineering, Yonsei Univeristy)
Jeon, M.H. (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Publication Information
Journal of the Korean Vacuum Society / v.17, no.1, 2008 , pp. 40-45 More about this Journal
Abstract
We present the effect of Ga-doping on the electrical, structural and optical properties of ZnO layers with a thickness of ${\sim}500nm$ deposited on glass substrates. Polycrystalline ZnO and Ga-doped ZnO (GZO) layers were deposited by radio frequency (rf) magnetron sputtering at room temperature. Based on the X-ray diffraction (XRD) and transmission electron microscopy (TEM) data, the crystalline quality of Ga-doped ZnO film was improved and GZO film has a preferred orientation along with the (002) crystal direction. The transmittance of the GZO film was enhanced by 10% in the visible region from that of the ZnO film. From photoluminescence (PL) data, the ratio of intensity of near band edge (NBE) emission to deep level (DL) emission was as high as 2.65:1 and 1.27:1 in the GZO and ZnO films, respectively. The res istivities of GZO and ZnO films were measured to be 1.27 and 1.61 $\Omega{\cdot}cm$, respectively. The carrier concentrations of ZnO and GZO film were approximately 1018 and 1020 $cm^2$/Vs, respectively. Based on our experimental results, the Ga-doping improves the electrical, structural and optical properties of ZnO film with potential application.
Keywords
zine oxide(ZnO); Ga doping; Glass substrate; Room temperature; rf magnetron sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Minami, MRS Bull. 25, 38 (2000)
2 H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish, Semiconducting Transparent Thin Film (Institute of Physics Publ, Bristol, 1995)
3 D. C. Kim, B. H. Kong and H. K Cho, phys. stat. sol. (b) 244, 1512 (2007)   DOI   ScienceOn
4 K. SHIMAKAWA and T. ITOH, Jpn. J. Appl. Phys. 46, L577 (2007)   DOI   ScienceOn
5 S. A. Studenikin, N. Golego and M. Cocivera, J .Appl. Phys. 84, 2287 (1998)   DOI   ScienceOn
6 K. Vandheusen, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. N. Gnage, J. Appl. Phys. 79, 7983 (1996)   DOI   ScienceOn
7 R. G. Gordon, MRS Bull. 25, 52 (2000)
8 Q. P. wang, D. H Zhang and H. L Ma, Applied Surface Science 220, 12 (2003)   DOI   ScienceOn
9 O. F. Schirmer and D. Zwingel, Solid State Commun. 8, 1559 (1970)   DOI   ScienceOn
10 D. M. Bagnell, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto and T. Yao, J. Cryst. Growth 184/185, 605 (1998)   DOI   ScienceOn
11 T. Minami, H. Sato, H. Nanto and S. Takata, Jpn. J. Appl. Phys. 24, L781 (1985)   DOI   ScienceOn
12 J. CHO, J. NAH, M. S OH, J. H. SONG, K. H YOON, H. J. JUNG and W. K CHOI, Jpn. J. Appl. Phys. 40, L1040 (2001)   DOI   ScienceOn
13 J. H and. G. Gordon, J. Appl. Phys. 72 , 5381 (1992)   DOI
14 Y. Ma, G. Du, J. Yin, T. Yang and Y. Zhang, Semicond. Sci. Technol. 20, 1198 (2005)   DOI   ScienceOn
15 H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch and T. Yao, Appl. Phys. Lett. 77, 3761 (2000)   DOI   ScienceOn
16 H. P. Klug and L. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (2nd ed.), (John Wiley and Sons, NewYork 1974)
17 X. Yu, J. Ma, F. Ji and Y. Qang, Thin Solid films 483 (2005)
18 X. H. Wang, D. X. Zhao, Y. C. Liu, J. Y. Zhang, Y. M. Lu and X. W. Fan, J. Cryst. Growth 263, 316 (2004)   DOI   ScienceOn
19 K. Ellmer, J. Phys. D. Appl. Phys. 34, 3097 (2001)   DOI   ScienceOn