• 제목/요약/키워드: ZnO nano-structure

검색결과 101건 처리시간 0.028초

Photocurrent Characteristics of ZnO Nanoparticles (ZnO 나노입자의 광전류 특성)

  • Jun, Jin-Hyung;Seong, Ho-Jun;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.207-207
    • /
    • 2008
  • ZnO is one of the widely utilized n-type semiconducting oxide materials in the field of optoelectronic devices. For its application to the fabrication of promising ultraviolet (UV) photodetectors, ZnO with various structures has been extensively studied. However, study on the photodetectors using zero-dimensional (0-D) ZnO nanoparticle is scarce while the 0-D nanoparticle structure has many advantages compared to the other dimensional structures for absorption of light. In this study, the photocurrent characteristics of ZnO nanoparticles were investigated through a simply pasting of the nanoparticles across the pre-patterned electrodes. Then the photoluminescence (PL) characteristic, photocurrent response spectrum, photo- and dark-current and photoresponse spectrum were investigated with a He-Cd laser and an Xe lamp. An dominant PL peak of the ZnO nanoparticles was located at the wavelength of 380 nm under the illumination of 325-nm wavelength light. The ratio of photocurrent to dark current (on/off ratio) is as high as 106 which is considerable value for promising photodetectors. On the other hand, the time constants in photoresponse were relatively slow. The reasons of the high on/off ratio and relatively slow photoresponse characteristic will be discussed.

  • PDF

Structural and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates (산소와 수소 플라즈마로 처리한 사파이어 기판 위에 성장된 ZnO 박막의 구조적.광학적 특성)

  • Lee, S.K.;Kim, J.Y.;Kwack, H.S.;Kwon, B.J.;Ko, H.J.;Yao, Takafumi;Cho, Y.H.
    • Journal of the Korean Vacuum Society
    • /
    • 제16권6호
    • /
    • pp.463-467
    • /
    • 2007
  • Structure and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates by plasma-assisted molecular beam epitaxy (denoted as samples A and B, respectively) have been investigated by various techniques. The crystal quality and structural properties of the surface for the ZnO epilayers were investigated by high-resolution X-ray diffraction and atomic force microscope. For investigating the optical properties of excitonic transition of ZnO, we carried out photoluminescence experiments as a function of temperature. The free exciton, bound exciton emission and their phonon replicas were investigated as a function of temperature from 10 to 300 K, and the intensity of excitonic PL peak emission from the sample A is found to be higher than that of sample B. From the results, we found that sample A has better crystal structure quality and optical properties as compared to sample B. The number of oxygen vacancies may be decreased in sample A, resulting in an enhancement of the crystal quality and a higher intensity of excitonic emission band as compared to sample B.

Fabrication of Nano-sized ZnO Colloids from Spray Combustion Synthesis (SCS) (분무연소합성(SCS)법에 의한 나노크기 산화아연(ZnO) 콜로이드의 제조)

  • Lee, Sang-Jin;Lee, Sang-Won;Jun, Byung-Sei
    • Journal of the Korean Ceramic Society
    • /
    • 제41권1호
    • /
    • pp.76-80
    • /
    • 2004
  • Nano-sized ZnO colloids were prepared by use of spray combustion method. for combustion reaction, $Zn(NO_3)_2{\cdot}6H_2O$ and $CH_6N_4O$ were employed as an oxidizer and a fuel. Exothermic peak was shown at $230^{\circ}C$ by DTA/TGA, and it was considered as a combustion reaction followed by ignition of the precursor mixture. In case of spray combustion method, because insufficient contents of molecules and radicals generated from precursor droplets may lead an incomplete igmition, the ignition temperature of combustion chamber was chosen at $500^{\circ}C$. For diminishing aerosol coagulation, the droplet number concentration was reduced by filter media. The fluid was laminar with 2.5 seconds of aerosol residence time. The synthesized colloids had spherical shape with 180 nanometer size, and the crystalline phase was ZnO with hexagonal structure.

Influence of Sn Doping on Structural and Optical Properties of Zinc Oxide Nanorods Prepared Via Hydrothermal Process

  • Park, Hyunggil;Kim, Younggyu;Ji, Iksoo;Kim, Soaram;Kim, Jin Soo;Son, Jeong-Sik;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.203.2-203.2
    • /
    • 2013
  • Hydrothermally grown ZnO nanorods were synthesized with various Sn contents on quartz substrates, ranging from 0 to 2.5 at% in increment 0.5 at%. Scanning electron microscopy (SEM) and ultraviolet (UV)- visible spectroscopy were used to determine the effect of Sn doping on the structural and optical properties. In the SEM images, the nanorods have hexagonal wurzite structure and the diameter of the nanorods increase with increase in the Sn contents. The optical parameters of the Sn-doped ZnO nanorods such as the absorption coefficients, optical bandgaps, Urbach energies, refractive indices, dispersion parameters, dielectric constants, and optical conductivities were gained from the transmittance and reflectance results. In the PL spectra, the NBE peaks in the UV region decrease and blue-shift with increase in the Sn contents. In addition, the DLE peaks in the visible region of the nanorods shift toward low-energy region when the ZnO nanorods doped with various Sn contents.

  • PDF

Enhancement of light extraction efficiency in vertical light-emitting diodes with MgO nano-pyramids structure

  • Son, Jun-Ho;Yu, Hak-Ki;Lee, Jong-Lam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2010년도 춘계학술회의 초록집
    • /
    • pp.16-16
    • /
    • 2010
  • GaN-based light-emitting diodes (LEDs) are attracting great interest as candidates for next-generation solid-state lighting, because of their long lifetime, small size, high efficacy, and low energy consumption. However, for general illumination applications, the external quantum efficiency of LEDs, determined by the internal quantum efficiency (IQE) and the light extraction efficiency, must be further increased. The IQE is determined by crystal quality and epitaxial layer structure and high value of IQE more than 70% for blue LEDs have been already reported. However, there is much room for improvement of light extraction efficiency because most of the generated photons from active layer remain inside LEDs by total internal reflection at the interface of semiconductor with air due to the high refractive index difference between LEDs epilayer (for GaN, n=2.5) and air (n=1). The light confining in LEDs will be reabsorbed by the metal electrode or active layer, reducing the efficacy of LEDs. Here, we present the first demonstration of enhanced light extraction by forming a MgO nano-pyramids structure on the surface of vertical-LEDs. The MgO nano-pyramids structure was successfully fabricated at room temperature using conventional electron-beam evaporation without any additional process. The nano-sized pyramids of MgO are formed on the surface during growth due to anisotropic characteristics between (111) and (200) plane of MgO. The ZnO layer with quarter-wavelength in thickness is inserted between GaN and MgO layers to increase the critical angle for total internal reflection, because the refractive index of ZnO (n=1.94) could be matched between GaN (n=2.5) and MgO (n=1.73). The MgO nano-pyramids structure and ZnO refractive-index modulation layer enhanced the light extraction efficiency ofV-LEDs with by 49%, comparing with the V-LEDs with a flat n-GaN surface. The angular-dependent emission intensity shows the enhanced light extraction through the side walls of V-LEDs as well as through the top surface of the n-GaN, because of the increase in critical angle for total internal reflection as well as light scattering at the MgO nano-pyramids surface.

  • PDF

Technical issue for growth of ZnO nano-structure by PLD

  • Kim, Se-Yun;Jo, Gwang-Min;Yu, Jae-Rok;Lee, Jun-Hyeong;Kim, Jeong-Ju;Heo, Yeong-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.207-207
    • /
    • 2013
  • 증착온도 $700^{\circ}C$, 산소분압30mTorr에서 c-plane 사파이어 기판위에 PLD를 이용하여 ZnO nano-rod를 합성하였다. 거리가 멀어질수록 rod의 직경과 증착율이 감소하는 것을 확인 하였다. 이는 ablated particle이 가진 kinetic energy가 감소되고, cluster ion의 형성으로 인해 고온에서 rod가 형성될 수 있는 것으로 이해된다. 고진공에서는 kinetic energy가 감소되기 어렵기 때문에 nano-rod shape 형성은 불가능 할 것이며, ZnO와 같은 wurtzite 구조를 가진 물질의 타겟을 사용하여 cluster 형성 분위기에서 증착한다면 비슷한 경향을 나타낼 것으로 예상된다.

  • PDF

Characterization of TMA-A zeolite incorporated by ZnO nanocrystals (ZnO 나노결정을 담지한 TMA-A 제올라이트의 특성분석)

  • Lee, Seok Ju;Lim, Chang Sung;Kim, Ik Jin
    • Analytical Science and Technology
    • /
    • 제21권1호
    • /
    • pp.58-63
    • /
    • 2008
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$ : 2.2 TEOS : 2.4 TMAOH : 0.3 NaOH : 200 $H_2O$. 0.3 g of TMA-A zeolite and 5 mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The incorporated nano-sized ZnO crystals and the crystallinity of TMA-A zeolite were evaluated by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The size of the incorporated nano-sized ZnO crystals was 3~5 nm, while the TMA-A zeolite was 60~100 nm. The bonding structure and absorption of the ZnO incorporated TMA-A zeolite were compared with the ZnO and TMA-A zeolite by the FT-IR analysis. Subsequentlly, the ZnO incorporated TMA-A zeolite showed the photoluminescent characteristics on the wavelengths of 330~260 nm and 260~230 nm by measurement of UV spectrophotometer.

Fabrication of Transition-metal-incorporated TiO2 Nanopowder by Flame Synthesis (화염법에 의한 천이금속 첨가 이산화티타늄 나노분말의 제조)

  • Park Hoon;Jie Hyunseock;Lee Seung-Yong;Ahn Jae-Pyoung;Lee Dok-Yol;Park Jong-Ku
    • Journal of Powder Materials
    • /
    • 제12권6호
    • /
    • pp.399-405
    • /
    • 2005
  • Nanopowders of titanium dioxide $(TiO_2)$ incorporating the transition metal element(s) were synthesized by flame synthesis method. Single element among Fe(III), Cr(III), and Zn(II) was doped into the interior of $TiO_2$ crystal; bimetal doping of Fe and Zn was also made. The characteristics of transition-metal-doped $TiO_2$ nanopowders in the particle feature, crystallography and electronic structures were determined with various analytical tools. The chemical bond of Fe-O-Zn was confirmed to exist in the bimetal-doped $TiO_2$ nanopowders incorporating Fe-Zn. The transition element incorporated in the $TiO_2$ was attributed to affect both Ti 3d orbital and O 2p orbital by NEXAFS measurement. The bimetal-doped $TiO_2$ nanopowder showed light absorption over more wide wavelength range than the single-doped $TiO_2$ nanopowders.

Pyrolysis Synthesis of CdSe/ZnS Nanocrystal Quantum Dots and Their Application to Light-Emitting Diodes (CdSe/ZnS 나노결정 양자점 Pyrolysis 제조와 발광다이오드 소자로의 응용)

  • Kang, Seung-Hee;Kumar, Kiran;Son, Kee-Chul;Huh, Hoon-Hoe;Kim, Kyung-Hyun;Huh, Chul;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • 제18권7호
    • /
    • pp.379-383
    • /
    • 2008
  • We report on the light-emitting diode (LED) characteristics of core-shell CdSe/ZnS nanocrystal quantum dots (QDs) embedded in $TiO_2$thin films on a Si substrate. A simple p-n junction could be formed when nanocrystal QDs on a p-type Si substrate were embedded in ${\sim}5\;nm$ thick $TiO_2$ thin film, which is inherently an n-type semiconductor. The $TiO_2$ thin film was deposited over QDs at $200^{\circ}C$ using plasma-enhanced metallorganic chemical vapor deposition. The LED structure of $TiO_2$/QDs/Si showed typical p-n diode currentvoltage and electroluminescence characteristics. The colloidal core-shell CdSe/ZnS QDs were synthesized via pyrolysis in the range of $220-280^{\circ}C$. Pyrolysis conditions were optimized through systematic studies as functions of synthesis temperature, reaction time, and surfactant amount.

Characteristics and Preparation of Gas Sensor Using Nano Indium Coated ZnO:In (나노 Indium을 부착한 ZnO:In 가스센서의 제작 및 특성)

  • Jung, Jong-Hun;Yu, Yun-Sik;Yu, Il
    • Korean Journal of Materials Research
    • /
    • 제21권9호
    • /
    • pp.486-490
    • /
    • 2011
  • Nano-indium-coated ZnO:In thick films were prepared by a hydrothermal method. ZnO:In gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties of the gas sensors were investigated for hydrocarbon gas. The effects of the indium concentration of the ZnO:In gas sensors on the structural and morphological properties were investigated by X-ray diffraction and scanning electron microscopy. XRD patterns revealed that the ZnO:In with wurtzite structure was grown with (1 0 0), (0 0 2), and (1 0 1) peaks. The quantity of In coating on the ZnO surface increased with increasing In concentration. The sensitivity of the ZnO:In sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of the ZnO:In sensors was observed at the In 6 wt%. The response and recovery times of the 6 wt% indiumcoated ZnO:In gas sensors were 19 s and 12 s, respectively.