DOI QR코드

DOI QR Code

Structural and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates

산소와 수소 플라즈마로 처리한 사파이어 기판 위에 성장된 ZnO 박막의 구조적.광학적 특성

  • Lee, S.K. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University) ;
  • Kim, J.Y. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University) ;
  • Kwack, H.S. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University) ;
  • Kwon, B.J. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University) ;
  • Ko, H.J. (Korea Photonics Technology Institute) ;
  • Yao, Takafumi (Institute for Materials Research, Tohoku University) ;
  • Cho, Y.H. (National Research Laboratory for Nano-Bio-Photonics, Department of Physics, Chungbuk National University)
  • Published : 2007.11.30

Abstract

Structure and optical properties of ZnO epilayers grown on oxygen- and hydrogen-plasma treated sapphire substrates by plasma-assisted molecular beam epitaxy (denoted as samples A and B, respectively) have been investigated by various techniques. The crystal quality and structural properties of the surface for the ZnO epilayers were investigated by high-resolution X-ray diffraction and atomic force microscope. For investigating the optical properties of excitonic transition of ZnO, we carried out photoluminescence experiments as a function of temperature. The free exciton, bound exciton emission and their phonon replicas were investigated as a function of temperature from 10 to 300 K, and the intensity of excitonic PL peak emission from the sample A is found to be higher than that of sample B. From the results, we found that sample A has better crystal structure quality and optical properties as compared to sample B. The number of oxygen vacancies may be decreased in sample A, resulting in an enhancement of the crystal quality and a higher intensity of excitonic emission band as compared to sample B.

[ $Al_2O_3$ ]기판을 산소 plasma 또는 수소 plasma로 표면 처리한 후 그 위에 plasma-assisted molecular beam epitaxy 방법으로 성장된 ZnO 박막의 구조적 특성과 광학적 발광 특성을 체계적으로 조사하였다. 제작된 ZnO 박막은 high resolution X-ray diffraction 측정과 atomic force microscope를 사용하여 구조적 특성과 표면 특성을 관찰하였으며, photoluminescence (PL) 측정을 통하여 엑시톤과 관련된 광학적 전이특성을 온도에 따라 조사하였다. free exciton, bound exciton, 그리고 이들의 phonon replica들의 특성을 온도에 따라 분석하였으며, 산소 plasma로 표면 처리한 시료의 PL 세기가 수소 plasma 표면 처리한 시료의 PL 세기보다 상당히 커짐을 관찰하였다. 산소 plasma로 처리된 기판 위에 성장된 ZnO 시료가 수소 plasma로 처리된 경우보다 우수한 구조적 특성과 광학적 특성을 보였는데, 이는 산소 plasma로 표면 처리함으로써 산소 공공(oxygen vacancy)과 같은 결함 구조가 적게 생성되고 좋은 격자 상수 일치를 보여주므로 구조적 특징과 발광 특징이 향상되는 것으로 해석되었다.

Keywords

References

  1. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001) https://doi.org/10.1016/S0921-5107(00)00604-8
  2. D. C. Reynolds, D. C. Look, B. Jogai, C. W.Litton, G. Cantwell, and W. C. Harsch, Phys. Rev. B 60, 2340 (1999) https://doi.org/10.1103/PhysRevB.60.2340
  3. H. Ohta, K. M. Orita, M. Hirano, N. Sarukura, and H. Hosono, Appl. Phys. Lett. 77, 475 (2000) https://doi.org/10.1063/1.127015
  4. Y. Chen, H. J. Ko, S. K. Hong, and T. Yao, Appl.Phys. Lett. 76, 559 (2000) https://doi.org/10.1063/1.125817
  5. Y. Chen, N. T. Tuan, T. Segawa, H. J. Ko, S. K. Hong, and T. Yao, Appl. Phys. Lett. 78, 1469 (2001) https://doi.org/10.1063/1.1355665
  6. K. Miyamoto, M. Sano, H. Kato, and T. Yao, J.Cryst. Growth 265, 34 (2004) https://doi.org/10.1016/j.jcrysgro.2004.01.035
  7. H. S. Kang, J. S. Kang, J. W. Kim, and S. Y. Lee, J. Appl. Phys. 95, 1246 (2004) https://doi.org/10.1063/1.1633343
  8. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straburg, M. Dworzk, U. Haboeck, and A. B. Rodina, Phys. Stat. Sol. (b) 241, 231 (2004) https://doi.org/10.1002/pssb.200301962
  9. M. Grumdmann, H. V. Wenckstern, R. Pickenhanin, Th. Nobis, A. Rahm, and M. Lorenz, Super. and Micro. 38, 317 (2005)
  10. H. J. Egehaaf and D. OelKrug, J. Cryst. Growth 161, 190 (1996) https://doi.org/10.1016/0022-0248(95)00634-6
  11. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koimuma, and Y. Segawa, Solid State Commun. 103, 459 (1997) https://doi.org/10.1016/S0038-1098(97)00151-8
  12. Y. P. Varshni, Physica (Amsterdam) 34, 149 (1967) https://doi.org/10.1016/0031-8914(67)90062-6
  13. D. W. Hamby, D. A. Lucca, and M. J. Kolpfstein. J. Appl. Phys. 93, 3214 (2003) https://doi.org/10.1063/1.1545157
  14. A. Vladimir, A. A. Khan, and A. Alexander, Phys.Rev. B 73, 165317 (2006) https://doi.org/10.1103/PhysRevB.73.165317
  15. D. S. Jiang, H. Jung, and K. Ploog, J. Appl. Phys. 64, 1371 (1998) https://doi.org/10.1063/1.341862

Cited by

  1. Optical Emission Spectra of Oxygen Plasma Produced by Radio-Frequency Plasma vol.18, pp.2, 2009, https://doi.org/10.5757/JKVS.2009.18.2.102