• Title/Summary/Keyword: ZnO film

Search Result 1,492, Processing Time 0.027 seconds

Effect of Deposition Rate on the Property of ZnO Thin Films Deposited by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.98-100
    • /
    • 2006
  • ZnO thin films were deposited at different repetition rates of 5 Hz and 10 Hz by pulsed laser deposition. X-ray diffraction (XRD) full widths at half maximum (FWHMs) of (002) ZnO peak in ZnO thin film deposited at 5 Hz and 10 Hz was 0.22 and $0.26^{\circ}$, respectively. The grain size of ZnO thin film deposited at 5 Hz was larger than that of 10 Hz. The variation of repetition rates did not have an effect on the optical property of ZnO thin films. The degradation of the crystalline quality and surface morphology in ZnO thin film deposited at 10 Hz resulted from supersaturation effect by decrease of time interval between a ZnO particle arriving on a substrate by laser shot and a ZnO particle arriving on a substrate by next laser shot.

A Study on the Deposition Characteristics of ZnO Piezoelectric Thin film Bulk Acoustic Resonator (FBAR 응용을 위한 ZnO 압전 박막의 증착 특성에 관한 연구)

  • 최승혁;김종성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.716-722
    • /
    • 2003
  • ZnO thin films were deposited on Al and Pt electrodes by an RF reactive sputtering system for the fabrication of FBAR (film bulk acoustic wave resonator), and the effect of thermal treatment temperature on their c-axis preferred orientation was investigated. SEM experiments show that columnar structure of ZnO thin films were grown with c-axis normal to electrode material, and XRD experiments show that both ZnO films were grown with (002) plane preferred orientation, but larger diffraction peak was observed with Pt electrode. The peak intensity increased with higher thermal treatment temperature, but c-axis preferred orientation was diminished. The surface roughness of Al thin film was higher than that of Pt, and these affect the surface roughness of ZnO film deposited on the electrode. Though the preferred orientation with respect to Pt(111) plane was improved with higher thermal treatment temperature, this could not improve the c-axis orientation of ZnO film.

Fabrication of phosphorus doped ZnO thin film using multi-layer structure (다층 구조를 이용한 Phosphorus 도핑된 ZnO 박막 제작)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.27-29
    • /
    • 2005
  • ZnO and phosphorus doped ZnO thin films (ZnO:P) are deposited by pulsed laser deposition grown on (001) $Al_{2}O_{3}$. ZnO/ZnO:P/ZnO/$Al_{2}O_{3}$ (multi-layer) structure was used for phosphorus doped ZnO fabrication. This multi-layer structure thin film was annealed at $400^{\circ}C$ for 40 min. The electron concentration of that was changed from $10^{19}$ to $10^{16}/cm^{-3}$ after annealing. ZnO thin films with encapsulated structure showed the enhanced structural and optical properties than phosphorus doped ZnO without encapsulated layer. In this study, encapsulated ZnO structure was suggested to enhance electrical, structural and optical properties of phosphorus doped ZnO thin film and it was identified that encapsulated structure could be used to fabricate high quality phosphorus doped ZnO thin film.

  • PDF

Influence of Oxygen Partial Pressure on ZnO Thin Films for Thin Film Transistors

  • Kim, Jae-Won;Kim, Ji-Hong;Roh, Ji-Hyoung;Lee, Kyung-Joo;Moon, Sung-Joon;Do, Kang-Min;Park, Jae-Ho;Jo, Seul-Ki;Shin, Ju-Hong;Yer, In-Hyung;Koo, Sang-Mo;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.106-106
    • /
    • 2011
  • Recently, zinc oxide (ZnO) thin films have attracted great attention as a promising candidate for various electronic applications such as transparent electrodes, thin film transistors, and optoelectronic devices. ZnO thin films have a wide band gap energy of 3.37 eV and transparency in visible region. Moreover, ZnO thin films can be deposited in a poly-crystalline form even at room temperature, extending the choice of substrates including even plastics. Therefore, it is possible to realize thin film transistors by using ZnO thin films as the active channel layer. In this work, we investigated influence of oxygen partial pressure on ZnO thin films and fabricated ZnO-based thin film transistors. ZnO thin films were deposited on glass substrates by using a pulsed laser deposition technique in various oxygen partial pressures from 20 to 100 mTorr at room temperature. X-ray diffraction (XRD), transmission line method (TLM), and UV-Vis spectroscopy were employed to study the structural, electrical, and optical properties of the ZnO thin films. As a result, 80 mTorr was optimal condition for active layer of thin film transistors, since the active layer of thin film transistors needs high resistivity to achieve low off-current and high on-off ratio. The fabricated ZnO-based thin film transistors operated in the enhancement mode with high field effect mobility and low threshold voltage.

  • PDF

Fabrication and Characteristics of Li-doped ZnO Thin Films for SAW Filter Applications

  • Ha, Jae-Soo;Kim, Kwang-Ho
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.110-115
    • /
    • 1997
  • Li-doped ZnO films were prepared on Corning 1737 glass substrate by an rf magnetron sputtering technique using ZnO targets with various $Li_2CO_3$ contents ranging from 0 to 10 mol%. The effects of Li doping on the crystallinity and electrical properties of ZnO films were studied for their SAW filter applications. The film resistivity largely increased without suppressing the c-axis orientation and crystallinity with a small addition of Li. Heat treatment of the film at 40$0^{\circ}C$ induced that the film resistivity, c-axis orientation and crystallinity slightly increased. However, heat treatment of the film at 50$0^{\circ}C$ resulted in much lower resistivity than that of as-deposited film due to the increase of electron concentration caused by the evaporationof Li atoms from the ZnO film. Large addition of Li into the ZnO film rather diminished the film resistivity and suppressed the c-axis growth. It was concluded that a small doping of Li into the ZnO film and heat treatment at 40$0^{\circ}C$ caused the film resistivity to be high enough for SAW filter applications without suppression of the c-axis orientation and crystallinity.

  • PDF

A study on the crystallographic properties of ZnO thin films for FBAR (FBAR용 ZnO 박막의 결정학적 특성에 관한 연구)

  • Keum, M.J.;Park, W.H.;Yoon, Y.S.;Choe, Hyeong-Uk;Shin, Y.H.;Choe, Dong-Jin;Kim, K.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.703-706
    • /
    • 2002
  • Piezoelectric thin film such as ZnO and AlN can be applicable to FBAR (Film Bulk Acoustic Resonator) device of thin film type and FBAR can be applicable to MMIC. The characteristic of FBAR device is variable according to the deposition conditions of piezoelectric thin film when preparation of thin film by sputtering method. In this study, we prepared ZnO thin film for FBAR using Facing Targets Sputtering apparatus which can be deposited fine Quality thin film because temperature increase of substrate due to the bombardment of high-energy particles can be restrained. And crystalline and c-axis preferred orientation of ZnO thin film with deposition conditions was investigated by XRD.

  • PDF

Effect of Doping Amounts of Al2O3 and Discharge Power on the Electrical Properties of ZnO Transparent Conducting Films (ZnO 투명 전도막의 전기적 특성에 미치는 Al2O3 의 도핑 농도 및 방전전력의 효과)

  • Park Min-Woo;Park Kang-Il;Kim Byung-Sub;Lee Se-Jong;Kwak Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.328-333
    • /
    • 2004
  • Transparent ZnO:Al conductor films for the optoelectronic devices were deposited by using the capacitively coupled DC magnetron sputtering method. The effect of Al doping concentration and discharge power on the electrical and optical properties of the films was studied. The film resistivity of $8.5${\times}$10^{-4}$ $\Omega$-cm was obtained at the discharge power of 40 W with the ZnO target doped with 2 wt% $Al_2$$_O3$. The transmittance of the 840 nm thick film was 91.7% in the visible waves. Increasing doping concentration of 3 wt% $Al_2$$O_3$ in ZnO target results in significant decrease of film resistivity, which may be due to the formation of $Al_2$$O_3$ particles in the as-deposited ZnO:Al film and the reduced ZnO grain sizes. Increasing DC power from 40 to 60 W increases deposition rate by more than 50%, but can induce high defect density in the film, resulting in higher film resistivity.

The Effects of Oxygen Partial Pressure and Post-annealing on the Properties of ZnO-SnO2 Thin Film Transistors (ZnO-SnO2 투명박막트랜지스터의 특성에 미치는 산소분압 및 후속열처리의 영향)

  • Ma, Tae-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.4
    • /
    • pp.304-308
    • /
    • 2012
  • Transparent thin film transistors (TTFT) were fabricated using the rf magnetron sputtered ZnO-$SnO_2$ films as active layers. A ceramic target whose Zn atomic ratio to Sn is 2:1 was employed for the deposition of ZnO-$SnO_2$ films. To study the post-annealing effects on the properties of TTFT, ZnO-$SnO_2$ films were annealed at $200^{\circ}C$ or $400^{\circ}C$ for 5 min before In deposition for source and drain electrodes. Oxygen was added into chamber during sputtering to raise the resistivity of ZnO-$SnO_2$ films. The effects of oxygen addition on the properties of TTFT were also investigated. 100 nm $Si_3N_4$ film grown on 100 nm $SiO_2$ film was used as gate dielectrics. The mobility, $I_{on}/I_{off}$, interface state density etc. were obtained from the transfer characteristics of ZnO-$SnO_2$ TTFTs.

The Study of Transmittance and Conductivity in ZnO/Ag Multilayer Films (ZnO/Ag Multilayer의 투과율과 전도성에 관한 연구)

  • Kim, Yun-Hae;Kim, Do-Wan;Murakami, Ri-Ichi;Moon, Kyung-Man;Lee, Sung-Yul
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.39-43
    • /
    • 2011
  • This study has lowered the specific resistance by coating a thin film layer of Ag, playing the role of the electron donor on the ZnO that is used usefully for the transparent conductive oxides. Presently, this study has examined the transmittance and electric characteristics according to the thickness of the Ag thin film layer. Also, this study has observed the transmittance and electric characteristics according to the uppermost ZnO thin film layer of ZnO/Ag/ZnO symmetric film and has conducted the theoretical investigation. In order to observe the transmittance and electric characteristics according to the thickness of the Ag thin film layer and the uppermost ZnO thin film layer, this study conducted the film deposition at room temperature while making use of the DC magnetron sputtering system. In order to see the changes in the thickness of the Ag thin film layer, this study coated a thin film while increasing by 4nm; and, in order to see the changes in the thickness of uppermost ZnO thin film layer, it performed the thin film coating by increasing by 5nm. From the experimental result, the researchers observed that the best transmittance could be obtained when the thickness of the Ag thin film layer was 8nm, but the resistance and mobility increased as the thickness got larger. On the other hand, when the thickness of the uppermost ZnO thin film layer was 20nm, the experiment yielded the best transmittance with excellent electric characteristics. Also, when compared the ZnO/Ag asymmetric film with the ZnO/Ag/ZnO symmetric film, the ZnO/Ag asymmetric film showed better transmittance and electric characteristics.

Efficient Quantum Dot Light-emitting Diodes with Zn0.85Mg0.15O Thin Film Deposited by RF Sputtering Method (RF Sputtering 방법으로 증착된 Zn0.85Mg0.15O 박막을 적용한 고효율 양자점 전계 발광 소자 연구)

  • Kim, Bomi;Kim, Jiwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.49-53
    • /
    • 2022
  • In this study, quantum dot light-emitting diodes (QLEDs) of the optimized EL performance with a radio frequency (RF) sputtered Zn0.85Mg0.15O thin film as an electron transport layer (ETL). In typical QLEDs, ZnO nanoparticles (NPs) are widely used materials for ETL layer due to their advantages of high electron mobility, suitable energy level and easy capable of solution processing. However, the instability problem of solution-type ZnO NPs has not yet been resolved. To solve this problem, ZnMgO thin film doped with 15% Mg of ZnO was fabricated by RF sputtering and optimized for the device applied as an ETL. The QLEDs of optimized ZnMgO thin film exhibited a maximum luminance of 15,972 cd/m2 and a current efficiency of 7.9 cd/A. Efficient QLEDs using sputtering ZnMgO thin film show the promising results for the future display technology.