• Title/Summary/Keyword: ZnO film

Search Result 1,492, Processing Time 0.022 seconds

A Study of the Crystallographic Properties of $ZnO/SiO_{2}/Si$ Thin Film for FBAR (FBAR 용 $ZnO/SiO_{2}/Si$ 박막의 결정학적 특성에 관한 연구)

  • Keum, Min-Jong;Yun, Youn-So;Choi, Myung-Gyu;Chu, Soon-Nam;Choi, Hyung-Wook;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.140-143
    • /
    • 2002
  • In this study, we prepared ZnO/glass and $ZnO/SiO_{2}/Si$ thin film by Facing Targets Sputtering (FTS) system for Film Bulk Acoustic Resonator (FBAR). When the ZnO thin film applied to piezoelectric thin film, it requires good c-axis preferred orientation. And c-axis orientation has a remarkable difference with preparation conditions. Therefore, c-axis orientation must be significantly evaluated according to changing deposition conditions. Moreover, in order to prepare ZnO thin film with good crystallographic properties and progressive of efficiency of product process, the ZnO thin film should have to prepared as low temperature as possible. In this work, we prepared ZnO thin films on slide glass and $SiO_{2}/Si$ substrate. And the crystallographic characteristics of ZnO thin films on sputtering conditions were investigated by alpha-step and X-ray diffraction.

  • PDF

A Study or the Crystallographic Properties or ZnO/SiO2/Si Thin Film for FBAR (FBAR용 ZnO/SiO2Si 박막의 결정학적 특성에 관한 연구)

  • 금민종;손인환;최명규;추순남;최형욱;신영화;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.711-715
    • /
    • 2003
  • In this study, we prepared ZnO/glass and ZnO/SiO$_2$/Si thin film by Facing Targets Sputtering (FTS) system for Film Bulk Acoustic Resonator (FBAR). When the ZnO thin film applied to piezoelectric thin film, it requires good c-axis preferred orientation. And c-axis orientation has a remarkable difference with preparation conditions. Therefore, c-axis orientation must be significantly evaluated as a function of deposition conditions. Moreover, in order to prepare ZnO thin film with good crystallographic properties and progressive of efficiency of product process, the ZnO thin film should be prepared as low temperature as possible. In this work, we prepared ZnO thin films on slide glass and SiO$_2$/Si substrate. And the crystallographic characteristics of ZnO thin films on sputtering conditions were investigated by alpha-step and X-ray diffraction.

Preparation and Characterization of Al-doped ZnO Transparent Conducting Thin Film by Sol-Gel Processing (솔-젤법에 의한 Al-doped ZnO 투명전도막의 제조 및 특성)

  • Hyun, Seung-Min;Hong, Kwon;Kim, Byong-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.149-154
    • /
    • 1996
  • ZnO and Al-doped ZnO thin films were prepared by sol-gel dip-coating method and electrical and optical properties of films were investigated. Using the zinc acetate dihydrate and acetylaceton(AcAc) as a chelating agent stable ZnO sol was synthesized with HCl catalyst. Adding aluminium chloride to the ZnO sol Al-doped ZnO sol could be also synthesized. As Al contents increase the crystallinity of ZnO thin film was retarded by increased compressive stress in the film resulted from the difference of ionic radius between Zn2+ and Al3+ The thickness of ZnO and Al-doped ZnO thin film was in the range of 2100~2350$\AA$. The resistivity of ZnO thin films was measured by Van der Pauw method. ZnO and Al-doped ZnO thin films with annealing temperature and Al content had the resistivity of 0.78~1.65$\Omega$cm and ZnO and Al-doped ZnO thin film post-annealed at 40$0^{\circ}C$ in vacuum(5$\times$10-5 torr) showed the resistivity of 2.28$\times$10-2$\Omega$cm. And the trans-mittance of ZnO and Al-doped ZnO thin film is in the range of 91-97% in visible range.

  • PDF

Effect of thickness on properties of ZnO film prepared by direct current reactive magnetron sputtering method

  • Baek, C.S.;Kim, D.H.;Kim, H.H.;Lim, K.J.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.403-406
    • /
    • 2012
  • Effect of thickness on ZnO properties including the compositional ratio and crystallinity has been systematically investigated using a variety of characterization tools of x-ray diffraction, field emission scanning electron microscopy, x-ray fluorescence and x-ray photoelectron spectroscopy. Interestingly, it was observed that ZnO films below 80 nm in thickness were in oxygen deficiency, while the oxygen ratio was increased in the films above the thickness, although the compositional ratio of ZnO film was not linearly varied with increasing film thickness. Also, ZnO crystallinity, which is characterized by (002) diffraction pattern, was clearly improved with increasing film thickness. The properties of ZnO film with different sputtering time and the nature of direct current reactive sputtering process were discussed in terms of compositional ratio, especially oxygen ratio in ZnO film.

A properties of ZnO thin film deposited by magnetron sputtering and its resistivity and microstructure due to annealing (Magnetron sputtering으로 증착한 ZnO 박막의 특성과 열처리에 따른 비저항과 미세구조)

  • 이승환;성영권;김종관
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.126-133
    • /
    • 1997
  • In order to apply for the gas sensing layer and the piezoelectric thin film devices, we studied the effects of magnetron sputtering conditions and annealing temperature on the electrical and structual characteristics of the ZnO thin film. The optimal deposition conditions, in order to obtain a c axis of the ZnO (002) phase thin film which is perpendicular to SiO$_{2}$/Si substrate, were like these ; substrate temperature 150.deg. C, chamber pressure 2 mtorr, R.F. power 300 watts, gas flow ratio 0.4[O$_{2}$(Ar + $O_{2}$)]. When the ZnO thin film was annealed in 600.deg. C, $O_{2}$ gas ambient for 1 hr, the resistivity was 2.6 x 10$^{2}$.ohm.cm and the grain size of ZnO thin film was less than 1 .mu.m. So the ZnO thin film acquired from above conditions can apply for the gas sensing layer which require a c axis perpendicular to the substrate surface.

  • PDF

Effect of ZnO buffer layer on the property of ZnO thin film on $Al_{2}O_{3}$ substrate (사파이어 기판 위에 증착된 ZnO 박막 특성에 대한 ZnO 버퍼층의 영향)

  • Kim, Jae-Won;Kang, Jeong-Seok;Kang, Hong-Seong;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.140-142
    • /
    • 2003
  • ZnO thin films are demanded for device applications, so ZnO buffer layer was used to improve for good properties of ZnO thin film. In this study, the structural, electrical and optical properties of ZnO thin films deposited with various buffer thickness was investigated by X-ray diffraction (XRD), Hall measurements, Photoluminescence(PL). ZnO buffer layer and ZnO thin films on sapphire($Al_{2}O_{3}$) substrate have been deposited $200^{\circ}C$ and $400^{\circ}C$ respectively by pulsed laser deposition. It is observed the variety of lattice constant of ZnO thin film by (101) peak position shift with various buffer thickness. It is founded that ZnO thin film with buffer thickness of 20 nm was larger resistivity of 200 factor and UV/visible of 2.5 factor than that of ZnO thin films without buffer layer. ZnO thin films with buffer thickness of 20 nm have shown the most properties.

  • PDF

Electric Permittivity Properties and $ZnO/TiO_2$Thin Film Fabrication ($ZnO/TiO_2$ 박막 제작과 유전율 특성)

  • 김창석;최창주;이우선;오무송;김태성;김병인
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.290-294
    • /
    • 2001
  • In this study, ZnO is evaporated to be coated on n-type Si wafer substrate. Refractive coefficient of thin film that is evaporating TiO$_2$ onto ZnO increases linearly as thickness is getting thinner to have high value and high angle and it satisfies theoretical equation I(x)=Io exp (-$\alpha$x) theory that represents the strength of photon energy advancing through ZnO thin film. And dielectric constant of TiO$_2$ thin film evaporated onto ZnO is high and $\varepsilon$$_2$ is smaller than $\varepsilon$$_1$. The specimen TiO$_2$ thin film evaporated onto ZnO has much higher dielectric constant when photon energy is increased.

  • PDF

Preparation AZO(ZnO:Al) Thin Film for FBAR. by FTS Method (대향타겟스퍼터링법에 의한 FBAR용 AZO(ZnO:Al) 박막의 제작)

  • 금민종;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.422-425
    • /
    • 2004
  • In this study, the AZO thin films were prepared as a function of oxygen gas flow ratio at room temperature by FTS(Facing Targets Sputtering) apparatus using Zn:Al(metal)-Zn:Al(metal) or Zn(metal)-ZnO:Al(ceramic). The film thickness, crystalline and electric properties of AZO thin film was evaluated by $\alpha$-step, XRD and 4-point probe. In the results, the resistivity of AZO thin film was shown the lowest value about 8${\times}$10$^{-2}$ $\Omega$-cm(Zn:Al-Zn:Al), 3${\times}$10$^{-1}$ $\Omega$-cm(Zn-ZnO:Al) at the oxygen gas flow ratio 0.3. And the AZO thin film has good crystalline at oxygen gas flow ration 0.4, using Zn:Al-Zn:Al targets.

CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃ (P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성)

  • Kim, Ik-Ju;Oh, Byung-Hoon;Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

Analysis of Photoluminescence for N-doped and undoped p-type ZnO Thin Films Fabricated by RF Magnetron Sputtering Method

  • Liu, Yan-Yan;Jin, Hu-Jie;Park, Choon-Bae;Hoang, Geun C.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.24-27
    • /
    • 2009
  • N-doped ZnO thin films were deposited on n-type Si(100) and homo-buffer layer, and undoped ZnO thin film was also deposited on homo-buffer layer by RF magnetron sputtering method. After deposition, all films were in-situ annealed at $800^{\circ}C$ for 5 minutes in ambient of $O_2$ with pressure of 10Torr. X -ray diffraction shows that the homo-buffer layer is beneficial to the crystalline of N-doped ZnO thin films and all films have preferable c-axis orientation. Atomic force microscopy shows that undoped ZnO thin film grown on homo-buffer layer has an evident improvement of smoothness compared with N-dope ZnO thin films. Hall-effect measurements show that all ZnO films annealed at $800^{\circ}C$ possess p-type conductivities. The undoped ZnO film has the highest carrier concentration of $1.145{\times}10^{17}cm{-3}$. The photoluminescence spectra show the emissions related to FE, DAP and many defects such as $V_{Zn}$, $Zn_O$, $O_i$ and $O_{Zn}$. The p-type defects ($O_i$, $V_{Zn}$, and $O_{Zn}$) are dominant. The undoped ZnO thin film has a better p-type conductivity compared with N-doped ZnO thin film.