• 제목/요약/키워드: ZnO doping

검색결과 316건 처리시간 0.03초

Ga의 도핑농도에 따른 ZnO 박막의 특성 (Effects of Doping Concentration on the Properties of Ga-doped ZnO Thin Films Prepared by RF Magnetron Sputtering)

  • 김형민;마대영;박기철
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.984-989
    • /
    • 2012
  • We have investigated the structural, electrical and optical properties of Ga-doped ZnO (GZO) thin films prepared by RF magnetron sputtering with laboratory-made ZnO targets containing 1, 3, 5, 7 wt% of $Ga_2O_3$ powder as a doping source. The GZO thin films show the typical crystallographic orientation with c-axis regardless of $Ga_2O_3$ content in the targets. The $3,000{\AA}$ thick GZO thin films with the lowest resistivity of $7{\times}10^{-4}{\Omega}{\cdot}cm$ are obtained by using the GZO ($Ga_2O_3$= 5 wt%) target. Optical transmittance of all films shows higher than 80% at the visible region. The optical energy band gap for GZO films increases as the carrier concentration ($n_e$) in the film increases.

PMS-PZT 세라믹스의 압전특성에 미치는 ZnO의 영향 (Effects of ZnO on the Piezoelectric Properties of PMS-PZT Ceramics)

  • 손영진;황동연;김재창;조경원;김영민;어순철;김일호
    • 한국재료학회지
    • /
    • 제14권11호
    • /
    • pp.764-768
    • /
    • 2004
  • Perovskite Pb(Mn_{1/3}Sbu_{2/3})O_2-Pb(Zr,Ti)O_3\;(PMS-PZT) was prepared and ZnO doping effects on its piezoelectric properties were investigated. Pyrochlore phase was not identified in the PMS-PZT ceramics with $0\sim5\;mol\%$ ZnO sintered at $1100^{\circ}C$ for 2 hrs, and maximum sintered density of $7.92 g/cm^3$ was obtained. Piezoelectric charge constant and voltage constant increased to $359{\times}10^{-12}\;C/N\;and\;22.5{\times}10^{-13}\;Vm/N$, respectively, with increasing ZnO content. Mechanical quality factor reduced considerably with increasing ZnO content. When the ZnO content was 3 $mol\%$, electromechanical coupling factor and relative dielectric constant showed maximum values of $56\%$ and 1727, respectively. This should be evaluated by complicated variations of sintered density, tetragonality of lattice, grain size, and A-site vacancy generated by ZnO addition and $Zn^{2+}$ substitution.

Organic-Inorganic Nanohybrid Structure for Flexible Nonvolatile Memory Thin-Film Transistor

  • 윤관혁;;성명모
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.118-118
    • /
    • 2011
  • The Nano-Floating Gate Memory(NFGM) devices with ZnO:Cu thin film embedded in Al2O3 and AlOx-SAOL were fabricated and the electrical characteristics were evaluated. To further improve the scaling and to increase the program/erase speed, the high-k dielectric with a large barrier height such as Al2O3 can also act alternatively as a blocking layer for high-speed flash memory device application. The Al2O3 layer and AlOx-SAOL were deposited by MLD system and ZnO:Cu films were deposited by ALD system. The tunneling layer which is consisted of AlOx-SAOL were sequentially deposited at $100^{\circ}C$. The floating gate is consisted of ZnO films, which are doped with copper. The floating gate of ZnO:Cu films was used for charge trap. The same as tunneling layer, floating gate were sequentially deposited at $100^{\circ}C$. By using ALD process, we could control the proportion of Cu doping in charge trap layer and observe the memory characteristic of Cu doping ratio. Also, we could control and observe the memory property which is followed by tunneling layer thickness. The thickness of ZnO:Cu films was measured by Transmission Electron Microscopy. XPS analysis was performed to determine the composition of the ZnO:Cu film deposited by ALD process. A significant threshold voltage shift of fabricated floating gate memory devices was obtained due to the charging effects of ZnO:Cu films and the memory windows was about 13V. The feasibility of ZnO:Cu films deposited between Al2O3 and AlOx-SAOL for NFGM device application was also showed. We applied our ZnO:Cu memory to thin film transistor and evaluate the electrical property. The structure of our memory thin film transistor is consisted of all organic-inorganic hybrid structure. Then, we expect that our film could be applied to high-performance flexible device.----못찾겠음......

  • PDF

Photocatalytic study of Zinc Oxide with bismuth doping prepared by spray pyrolysis

  • Lin, Tzu-Yang;Hsu, Yu-Ting;Lan, Wen-How;Huang, Chien-Jung;Chen, Lung-Chien;Huang, Yu-Hsuan;Lin, Jia-Ching;Chang, Kuo-Jen;Lin, Wen-Jen;Huang, Kai-Feng
    • Advances in nano research
    • /
    • 제3권3호
    • /
    • pp.123-131
    • /
    • 2015
  • The unintentionally doped and bismuth (Bi) doped zinc oxide (ZnO) films were prepared by spray pyrolysis at $450^{\circ}C$ with zinc acetate and bismuth nitrate precursor. The n-type conduction with concentration $6.13{\times}10^{16}cm^{-3}$ can be observed for the unintentionally doped ZnO. With the increasing of bismuth nitrate concentration in precursor, the p-type conduction can be observed. The p-type concentration $4.44{\times}10^{17}cm^{-3}$ can be achieved for the film with the Bi/Zn atomic ratio 5% in the precursor. The photoluminescence spectroscopy with HeCd laser light source was studied for films with different Bi doping. The photocatalytic activity for the unintentionally doped and Bi-doped ZnO films was studied through the photodegradation of Congo red under UV light illumination. The effects of different Bi contents on photocatalytic activity are studied and discussed. Results show that appropriate Bi doping in ZnO can increase photocatalytic activity.

Al-doping Effects on Structural and Optical Properties of Prism-like ZnO Nanorods

  • Kim, So-A-Ram;Kim, Min-Su;Cho, Min-Young;Nam, Gi-Woong;Lee, Dong-Yul;Kim, Jin-Soo;Kim, Jong-Su;Son, Jeong-Sik;Leem, Jae-Young
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.420-420
    • /
    • 2012
  • ZnO seed layer were deposited on quartz substrate by sol-gel method and prism-like Al-doped ZnO nanorods (AZO nanorods) were grown on ZnO seed layer by hydrothermal method with various Al concentration ranging from 0 to 2.0 at.%. Structural and optical properties of the AZO nanorods were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), photoluminescence (PL). The diameter of the AZO nanorods was smaller than undoped ZnO nanorods and its diameter of the AZO nanorods decreased with increasing Al concentration. In XRD spectrum, it was observed that stress and full width at half maximum (FWHM) of the AZO nanorods decreased and the 'c' lattice constant increased as the Al concentration increased. From undoped ZnO nanorods, it was observed that the green-red emission peak of deep-level emission (DLE) in PL spectra. However, after Al doping, not only a broad green emission peak but also a blue emission peak of DLE were observed.

  • PDF

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • 김연상;박시윤;김경준;임건희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Biofilm formation on denture base resin including ZnO, CaO, and TiO2 nanoparticles

  • Anwander, Melissa;Rosentritt, Martin;Schneider-Feyrer, Sibylle;Hahnel, Sebastian
    • The Journal of Advanced Prosthodontics
    • /
    • 제9권6호
    • /
    • pp.482-485
    • /
    • 2017
  • PURPOSE. This laboratory study aimed to investigate the effect of doping an acrylic denture base resin material with nanoparticles of ZnO, CaO, and $TiO_2$ on biofilm formation. MATERIALS AND METHODS. Standardized specimens of a commercially available cold-curing acrylic denture base resin material were doped with 0.1, 0.2, 0.4, or 0.8 wt% commercially available ZnO, CaO, and $TiO_2$ nanopowder. Energy dispersive X-ray spectroscopy (EDX) was used to identify the availability of the nanoparticles on the surface of the modified specimens. Surface roughness was determined by employing a profilometric approach; biofilm formation was simulated using a monospecies Candida albicans biofilm model and a multispecies biofilm model including C. albicans, Actinomyces naeslundii, and Streptococcus gordonii. Relative viable biomass was determined after 20 hours and 44 hours using a MTT-based approach. RESULTS. No statistically significant disparities were identified among the various materials regarding surface roughness and relative viable biomass. CONCLUSION. The results indicate that doping denture base resin materials with commercially available ZnO, CaO, or $TiO_2$ nanopowders do not inhibit biofilm formation on their surface. Further studies might address the impact of varying particle sizes as well as increasing the fraction of nanoparticles mixed into the acrylic resin matrix.

Bi-Sr-Ca-Cu-O 세라믹의 도우핑 특성 (Deping characteristics of the Bi-Sr-Ca-Cu-O ceramics)

  • 박용필;김영천;황석영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 1996
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their supeconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

Hafnium doping effect in a zinc oxide channel layer for improving the bias stability of oxide thin film transistors

  • Moon, Yeon-Keon;Kim, Woong-Sun;Lee, Sih;Kang, Byung-Woo;Kim, Kyung-Taek;Shin, Se-Young;Park, Jong-Wan
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.252-253
    • /
    • 2011
  • ZnO-based thin film transistors (TFTs) are of great interest for application in next generation flat panel displays. Most research has been based on amorphous indium-gallium-zinc-oxide (IGZO) TFTs, rather than single binary oxides, such as ZnO, due to the reproducibility, uniformity, and surface smoothness of the IGZO active channel layer. However, recently, intrinsic ZnO-TFTs have been investigated, and TFT- arrayss have been demonstrated as prototypes of flat-panel displays and electronic circuits. However, ZnO thin films have some significant problems for application as an active channel layer of TFTs; it was easy to change the electrical properties of the i-ZnO thin films under external conditions. The variable electrical properties lead to unstable TFTs device characteristics under bias stress and/or temperature. In order to obtain higher performance and more stable ZnO-based TFTs, HZO thin film was used as an active channel layer. It was expected that HZO-TFTs would have more stable electrical characteristics under gate bias stress conditions because the binding energy of Hf-O is greater than that of Zn-O. For deposition of HZO thin films, Hf would be substituted with Zn, and then Hf could be suppressed to generate oxygen vacancies. In this study, the fabrication of the oxide-based TFTs with HZO active channel layer was reported with excellent stability. Application of HZO thin films as an active channel layer improved the TFT device performance and bias stability, as compared to i-ZnO TFTs. The excellent negative bias temperature stress (NBTS) stability of the device was analyzed using the HZO and i-ZnO TFTs transfer curves acquired at a high temperature (473 K).

  • PDF