Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.11.764

Effects of ZnO on the Piezoelectric Properties of PMS-PZT Ceramics  

Son Y.-J. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University)
Hwang D.-Y. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University)
Kim J.-C. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University)
Cho K.-W. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University)
Kim Y.-M. (Dept. of Materials Development, Cores Electronics Corporation(CEC))
Ur S.-C. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University)
Kim I.-H. (Dept. of Materials Science and Engineering/NT Lab., Chungju National University)
Publication Information
Korean Journal of Materials Research / v.14, no.11, 2004 , pp. 764-768 More about this Journal
Abstract
Perovskite Pb(Mn_{1/3}Sbu_{2/3})O_2-Pb(Zr,Ti)O_3\;(PMS-PZT) was prepared and ZnO doping effects on its piezoelectric properties were investigated. Pyrochlore phase was not identified in the PMS-PZT ceramics with $0\sim5\;mol\%$ ZnO sintered at $1100^{\circ}C$ for 2 hrs, and maximum sintered density of $7.92 g/cm^3$ was obtained. Piezoelectric charge constant and voltage constant increased to $359{\times}10^{-12}\;C/N\;and\;22.5{\times}10^{-13}\;Vm/N$, respectively, with increasing ZnO content. Mechanical quality factor reduced considerably with increasing ZnO content. When the ZnO content was 3 $mol\%$, electromechanical coupling factor and relative dielectric constant showed maximum values of $56\%$ and 1727, respectively. This should be evaluated by complicated variations of sintered density, tetragonality of lattice, grain size, and A-site vacancy generated by ZnO addition and $Zn^{2+}$ substitution.
Keywords
PMS-PZT; piezoelectric; ZnO doping;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Brankovi, G. Brankovic, C. Jovalekic, Y. Maniette, M. Cilense and J. A. Varela, Mater. Sci. Eng. A, 345(1-2), 243 (2003)   DOI   ScienceOn
2 C. O. Paiva-Santos, C. F. Oliveira, W. C. Las, M. A. Zaghete, J. A. Varela and M. Cilense, Mater. Res. Bull., 35(1), 15 (2000)   DOI   ScienceOn
3 R. F. Zhang, J. Ma, L. B. Kong, Y. Z. Chen and T. S. Zhang, Mater. Lett., 55(6). 388 (2002)   DOI
4 B. Jaffe, 'Piezoelectric ceramics', Academic Press, New York (1971)
5 T. Yamamoto, Am. Ceram. Bull., 71(6), 978 (1992)
6 R. B. Atkin and R. M. Fulrath, J. Am. Ceram. Soc., 54(5), 265 (1971)   DOI
7 M. J. Kim and S.. C. Choi, J. Kor. Ceram. Soc., 36(10), 1108 (1999)   과학기술학회마을
8 Z. Gui, H. Hu, L. Li and X. Zhang, Solid-State Phenomena, 25, 309 (1992)   DOI
9 T. R. Shrout and A. Halliyal, Am. Ceram. Bull., 66(4), 704 (1987)
10 J. W. Chan, Acta. Mater., 10, 787 (1962)
11 A. S. Khim, J. Wang and X. Junmin, J. Alloys Comp., 311(2), 181 (2000)   DOI   ScienceOn
12 J. Wang, D. M. Wan, J. M. Xue and W. B Ng. Am. Ceram. Soc., 82, 477 (1999)   DOI
13 IRE standards on piezoelectric crystals: measurements of piezoelectric ceramics, Proc. IRE, 49, 1161 (1961)   DOI   ScienceOn
14 S. Y. Chu, T. Y. Chen and I. T. Tsai, Mater. Lett., 58(5), 752 (2004)   DOI   ScienceOn
15 T. Hayashi, J. Tomizawa, T. Hasegawa and Y. Akiyam, J. Europ. Ceram. Soc., 24(6), 1037 (2004)   DOI   ScienceOn
16 J. Long, H. Chen and Z. Meng, Mater. Sci. Eng. B99(13), 445 (2003)   DOI   ScienceOn
17 W. L. Zhong, Y. G. Wang, S. B. Yue and P. L. Zhang, Solid State Comm., 90(6), 383 (1994)   DOI   ScienceOn
18 V. Koval, C. Alemany, J. Brianin, H. Brunckova and K. Saksl, J. Europ. Ceram. Sci., 23(7), 1157 (2003)   DOI   ScienceOn