• Title/Summary/Keyword: ZnO Thin Film

Search Result 1,206, Processing Time 0.027 seconds

Preparation AZO(ZnO:Al) Thin Film for FBAR. by FTS Method (대향타겟스퍼터링법에 의한 FBAR용 AZO(ZnO:Al) 박막의 제작)

  • 금민종;김경환
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.4
    • /
    • pp.422-425
    • /
    • 2004
  • In this study, the AZO thin films were prepared as a function of oxygen gas flow ratio at room temperature by FTS(Facing Targets Sputtering) apparatus using Zn:Al(metal)-Zn:Al(metal) or Zn(metal)-ZnO:Al(ceramic). The film thickness, crystalline and electric properties of AZO thin film was evaluated by $\alpha$-step, XRD and 4-point probe. In the results, the resistivity of AZO thin film was shown the lowest value about 8${\times}$10$^{-2}$ $\Omega$-cm(Zn:Al-Zn:Al), 3${\times}$10$^{-1}$ $\Omega$-cm(Zn-ZnO:Al) at the oxygen gas flow ratio 0.3. And the AZO thin film has good crystalline at oxygen gas flow ration 0.4, using Zn:Al-Zn:Al targets.

CO Gas Sensing Characteristic of ZnO Thin Film/Nanowire Based on p-type 4H-SiC Substrate at 300℃ (P형 4H-SiC 기판에 형성된 ZnO 박막/나노선 가스 센서의 300℃에서 CO 가스 감지 특성)

  • Kim, Ik-Ju;Oh, Byung-Hoon;Lee, Jung-Ho;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • ZnO thin films were deposited on p-type 4H-SiC substrate by pulsed laser deposition. ZnO nanowires were formed on p-type 4H-SiC substrate by furnace. Ti/Au electrodes were deposited on ZnO thin film/SiC and ZnO nanowire/SiC structures, respectively. Structural and crystallographical properties of the fabricated ZnO thin film/SiC and ZnO nanowire/SiC structures were investigated by field emission scanning electron microscope and X-ray diffraction. In this work, resistance and sensitivity of ZnO thin film/SiC gas sensor and ZnO nanowire/SiC gas sensor were measured at $300^{\circ}C$ with various CO gas concentrations (0%, 90%, 70%, and 50%). Resistance of gas sensor decreases at CO gas atmosphere. Sensitivity of ZnO nanowire/SiC gas sensor is twice as big as sensitivity of ZnO thin film/SiC gas sensor.

Fabrication of phosphorus doped ZnO thin film using multi-layer structure (다층 구조를 이용한 Phosphorus 도핑된 ZnO 박막 제작)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.27-29
    • /
    • 2005
  • ZnO and phosphorus doped ZnO thin films (ZnO:P) are deposited by pulsed laser deposition grown on (001) $Al_{2}O_{3}$. ZnO/ZnO:P/ZnO/$Al_{2}O_{3}$ (multi-layer) structure was used for phosphorus doped ZnO fabrication. This multi-layer structure thin film was annealed at $400^{\circ}C$ for 40 min. The electron concentration of that was changed from $10^{19}$ to $10^{16}/cm^{-3}$ after annealing. ZnO thin films with encapsulated structure showed the enhanced structural and optical properties than phosphorus doped ZnO without encapsulated layer. In this study, encapsulated ZnO structure was suggested to enhance electrical, structural and optical properties of phosphorus doped ZnO thin film and it was identified that encapsulated structure could be used to fabricate high quality phosphorus doped ZnO thin film.

  • PDF

High Conductive Transparent Electrode of ITO/Ag/i-ZnO by In-Line Magnetron Sputtering Method (인-라인 마그네트론 스퍼터링 방법에 의한 고전도성 ITO/Ag/i-ZnO 투명전극)

  • Kim, Sungyong;Kwon, Sangjik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.33-36
    • /
    • 2015
  • It has increased several decades in the field of Indium Tin Oxide (ITO) transparent thin film, However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials[1]. So far, in order to overcome this disadvantage, we show that a transparent ITO/Ag/i-ZnO multilayer thin film electrode would be more cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report the properties of ITO/Ag/i-ZnO multilayer thin film by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\Box}$ at same visible light transmittance. (minimal point $5.2{\Omega}/{\Box}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

The Study of Transmittance and Conductivity in ZnO/Ag Multilayer Films (ZnO/Ag Multilayer의 투과율과 전도성에 관한 연구)

  • Kim, Yun-Hae;Kim, Do-Wan;Murakami, Ri-Ichi;Moon, Kyung-Man;Lee, Sung-Yul
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.39-43
    • /
    • 2011
  • This study has lowered the specific resistance by coating a thin film layer of Ag, playing the role of the electron donor on the ZnO that is used usefully for the transparent conductive oxides. Presently, this study has examined the transmittance and electric characteristics according to the thickness of the Ag thin film layer. Also, this study has observed the transmittance and electric characteristics according to the uppermost ZnO thin film layer of ZnO/Ag/ZnO symmetric film and has conducted the theoretical investigation. In order to observe the transmittance and electric characteristics according to the thickness of the Ag thin film layer and the uppermost ZnO thin film layer, this study conducted the film deposition at room temperature while making use of the DC magnetron sputtering system. In order to see the changes in the thickness of the Ag thin film layer, this study coated a thin film while increasing by 4nm; and, in order to see the changes in the thickness of uppermost ZnO thin film layer, it performed the thin film coating by increasing by 5nm. From the experimental result, the researchers observed that the best transmittance could be obtained when the thickness of the Ag thin film layer was 8nm, but the resistance and mobility increased as the thickness got larger. On the other hand, when the thickness of the uppermost ZnO thin film layer was 20nm, the experiment yielded the best transmittance with excellent electric characteristics. Also, when compared the ZnO/Ag asymmetric film with the ZnO/Ag/ZnO symmetric film, the ZnO/Ag asymmetric film showed better transmittance and electric characteristics.

A Study on SAW Properties of Bilayer Thin Film Structure Composed of ZnO and Dielectric Thin Films (ZnO 박막과 유전체 박막으로 구성된 이중구조의 물성 및 표면 탄성파 특성)

  • 이용의;김형준
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.134-140
    • /
    • 1995
  • SAW properties of SiNx/ZnO bilayer thin film structure were analyzed. ZnO thin films were deposited by rf magnetron sputter using O2 gas as an oxidizer. Structure of ZnO thin films was affected by Ar/O2 ratio. At the gas ratio of Ar/O2=67/33, the standard deviation of X-ray rocking curve of (002) preferred ZnO thin film was 2.17 degree. This value is sufficient to use ZnO thin films as an acoustic element. SAW velocity of glass/SiNx(7000Å)/Al/ZnO(5μm) structure was max. 2.2% faster than that of ZnO/glass.

  • PDF

Dependences of Various Substrate Temperature on the Structural and Electrical Properties of ZnO Thin Films deposited by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 증착한 ZnO 박막의 증착온도에 따른 구조 및 전기적 특성)

  • Oh, Su-Young;Kim, Eung-Kwon;Lee, Tae-Yong;Kang, Hyun-Il;Lee, Jong-Hwan;Song, Joon-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.11
    • /
    • pp.965-968
    • /
    • 2007
  • In this study we investigated the variation of the substrate temperatures using RF sputtering to identify the effect on the structure and electrical properties by c-axis orientation of ZnO thin film. ZnO thin films were prepared on Al/Si substrate. In our experimental results, ZnO thin film at $300^{\circ}C$ was well grown with (002) peak of ZnO thin film, the thin film showed the high resistivity with the value of $5.9{\times}10^7\;{\Omega}cm$ and the roughness with 27.06 nm. As increased the substrate temperatures, the grain size of ZnO thin films was increased. From these results, we could confirm the suitable substrate temperature of ZnO thin films for FBAR(film bulk acoustic resonator).

Effects of ZnO Buffer Layer Thickness on the Crystallinity and Photoluminescence Properties of Rf Magnetron Sputter-deposited ZnO Thin Films (rf 마그네트런 스퍼터링법으로 Si 기판위에 증착한 ZnO 박막의 결정성과 photoluminescence 특성에 대한 Zn 완충층 두께의 영향)

  • Cho, Y.J.;Park, An-Na;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.445-448
    • /
    • 2006
  • Highly c-axis oriented ZnO thin films were grown on Si(100)substrates with Zn buffer layers. Effects of the Zn buffer layer thickness on the structural and optical qualities of ZnO thin films were investigated using X-ray diffraction (XRD), photoluminescence (PL) and Atomic force microscopy (AFM) analysis techniques. It was confirmed that the quality of a ZnO thin film deposited by rf magnetron sputtering was substantially improved by using a Zn buffer layer. The highest ZnO film quality was obtained with a Zn buffer layer 110 nm thick. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.

Crystallography properties of $ZnO/AZO/SiO_2/Si$ thin film for FBAR (FBAR용 $ZnO/AZO/SiO_2/Si$ 박막의 결정학적 특성에 관한 연구)

  • Kang, Tai-Young;Keum, Min-Jong;Son, In-Hwan;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.880-883
    • /
    • 2003
  • ZnO thin films for Film Bulk Acoustic Resonator(FBAR) were prepared by FTS (Facing Target Sputtering) system. The FTS methode enable to generate high density plasma, and it has a high deposition rate at 1mTorr pressure. Therefore, the ZnO thin films were deposited on $AZO/SiO_2/Si$ substrates with oxygen gas flow rate, and the other sputtering conditions were fixed such as a sputtering current of 0.8A, a substrate temperature at room temperature. AZO bottom electrode were deposited on $SiO_2/Si$ substrate and by Zn:Al(Al:2wt%) metal target. ZnO thin film thickness and the c-axis preferred orientation of ZnO thin film were evaluated by ${\alpha}-step$ and XRD.

  • PDF

A Study on the Growth of ZnGa$_2$O$_4$ Thin Film Phosphors (ZnGa$_2$O$_4$ 박막형광체 성장에 관한 연구)

  • 정영호;김영진
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.145-150
    • /
    • 1998
  • ZnGa2O4 thin film phosphors were deposited on Si(100) (111) wafers by rf magnetron sputtering. The ef-fects of substrates and deposition parameters on the growing mechanisms were studied. As a results of the effect of substrate temperature tranistions of growth orientation and different growing behaviors were ob-served. Also polycrystalline ZnGa2O4 thin film could not be achieved without oxygen gas. PL spectrum of ZnGa2O4 thin films were analyzed and showed broad band luminescence spectrum.

  • PDF