• Title/Summary/Keyword: ZnO Nanowire

Search Result 143, Processing Time 0.029 seconds

Study for the fabrication of electrodes and photoconductive properties of a single ZnO nanowire (단일 ZnO 나노선의 전극 형성 및 광전도 특성 연구)

  • Keem, Ki-Hyun;Jeong, Dong-Young;Kim, Kyung-Hwan;Kang, Jeong-Min;Yoon, Chang-Joon;Min, Byung-Don;Kim, Sang-Sig
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.33-34
    • /
    • 2005
  • Electrodes were fabricated on a single ZnO nanowire by photolithography process, metal evaporation, and lift-off. The slow photoresponses of the ZnO nanowire under the continuous illumination of 325nm-wavelength light (corresponding to above-bandgap excitation) indicate that the traps related to oxygen vacancy disturb the flow of electron in ZnO nanowire. The photoresponse and PL spectra were measured, and observed that the excitonic band in the PL spectrum was absent in the photoresponse.

  • PDF

Enhanced Field Emission Properties of Strain controlled ZnO Nanowire Arrays Synthesized by Employing Substrate Hanging Method

  • Raghavan, C.M.;Yan, Changzeng;Patole, Shashikant P.;Yoo, J.B.;Kang, Dae-Joon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.576-576
    • /
    • 2012
  • High quality single crystalline strain controlled wurtzite ZnO nanowire arrays have been grown on conductive silicon and ITO substrates by a facile hydrothermal method. The diameter of the nanowires was found to be less than 90 nm approximately for both of the two kinds of substrates. The quality of the ZnO nanowire arrays is dramatically improved by hanging the substrate above from the bottom of the Teflon lined autoclave. The structural investigation indicates the preferential orientation of the nanowire along c-axis. In order to make the convincible comparison, the photoluminescence property of the nanowire arrays grown under different conditions are measured, the sharp near band edge emission from PL, low turn-on voltage ($1.9V/{\mu}m$) from field emission measurement and Fowler-Nordheim plot was investigated from ZnO nanowire arrays grown by proposed substrate hanging method.

  • PDF

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Novel Enhanced Flexibility of ZnO Nanowires Based Nanogenerators Using Transparent Flexible Top Electrode

  • Gang, Mul-Gyeol;Ha, In-Ho;Kim, Seong-Hyeon;Jo, Jin-U;Ju, Byeong-Gwon;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.1-490.1
    • /
    • 2014
  • The ZnO nanowire (NW)-based nanogenerators (NGs) can have rectifying current and potential generated by the coupled piezoelectric and semiconducting properties of ZnO by variety of external stimulation such as pushing, bending and stretching. So, ZnO NGs needed to enhance durability for stable properties of NGs. The durability of the metal electrodes used in the typical ZnO nanogenerators(NGs) is unstable for both electrical and mechanical stability. Indium tin oxide (ITO) is used as transparent flexible electrode but because of high cost and limited supply of indium, the fragility and lack of flexibility of ITO layers, alternatives are being sought. It is expected that carbon nanotube and Ag nanowire conductive coatings could be a prospective replacement. In this work, we demonstrated transparent flexible ZnO NGs by using CNT/Ag nanowire hybrid electrode, in which electrical and mechanical stability of top electrode has been improved. We grew vertical type ZnO NW by hydrothermal method and ZnO NW was coated with hybrid silicone coating solution as capping layer to enhance adhesion and durability of ZNW. We coated the CNT/Ag nanowire hybrid electrode by using bar coating system on a capping layer. Power generation of the ZnO NG is measured by using a picoammeter, a oscilloscope and confirmed surface condition with FE-SEM. As a results, the NGs using the CNT/Ag NW hybrid electrode show 75% transparency at wavelength 550 nm and small change of the resistance of the electrode after bending test. It will be discussed the effect of the improved flexibility of top electrode on power generation enhancement of ZnO NGs.

  • PDF

Electrical Properties of a Single ZnO Nanowire in a four-probe Configuration (단일 ZnO 나노선 4단자 소자의 전기적 특성)

  • Kim, Kang-hyun;Kang, Hae-yong;Yim, Chan-young;Jeon, Dae-young;Kim, Hye-young;Kim, Gyu-Tae;Lee, Jong-Soo;Kang, Woun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1087-1091
    • /
    • 2005
  • Four-probe device of single ZnO nanowire was fabricated by electron beam lithography. Electrical characterizations in a two-probe and a four-probe configuration with a back-gate were carried out to clarify the relative contribution of the contact and the intrinsic part in a ZnO nanowire. I-V characteristic in four-probe measurement showed an ohmic behavior with a high conductivity, 100 S/cm, which was better than those of two-probe measurement by 10 times. At the same values of the current between two-probe and four-probe, the net voltage applied inside the nanowire were extracted with calculated voltages at the contact. Four-probe current-gate voltage characteristics showed bigger tendencies than those of two-probe measurement at low temperatures, indicating the reduced gate dependence in two-Probe measurements by the existence of the contact resistance.

Au Catalyst Free and Effect of Ga-doped ZnO Seed Layer on Structural Properties of ZnO Nanowire Arrays

  • Yer, In-Hyung;Roh, Ji-Hyoung;Shin, Ju-Hong;Park, Jae-Ho;Jo, Seul-Ki;Park, On-Jeon;Moon, Byung-Moo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.354-354
    • /
    • 2012
  • In this study, we report the vertically aligned ZnO nanowires by using different type of Ga-doped ZnO (GZO) thin films as seed layers to investigate how the underlying GZO film micro structure affects the distribution of ZnO nanowires. Arrays of highly ordered ZnO nanowires have been synthesized on GZO thin film seed layer prepared on p-Si substrates ($7-13{\Omega}cm$) with utilize of a pulsed laser deposition (PLD). With the vapor-liquid-solid (VLS) growth process, the ZnO nanowire synthesis carries out no metal catalyst and is cost-effective; furthermore, The GZO seed layer facilitates the uniform growth of well-aligned ZnO nanowires. The influence of the growth temperature and various thickness of GZO seed layer have been analyzed. Crystallinity of grown seed layer was studied by X-Ray diffraction (XRD); diameter and morphology of ZnO nanowires on seed layer were investigated by field emission scanning electron microscopy (FE-SEM). Our results suggest that the GZO seed layer with high c-axis orientation, good crystallinity, and less lattice mismatch is key parameters to optimize the growth of well-aligned ZnO nanowire arrays.

  • PDF

Low Temperature Processed Transparent Conductive Thin Films Based on Sol-Gel ZnO / Ag Nanowire (저온 형성 가능한 "졸겔 ZnO / 은 나노선" 복합 투명전도막)

  • Shin, Won-Jung;Kim, Bo Seok;Moon, Chan-Su;Cho, Won-Ki;Baik, Seung Jae
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.110-114
    • /
    • 2014
  • We propose a low temperature sol-gel ZnO/Ag nanowire composite thin film to fulfill low temperature and low cost requirements, which are essential criteria in future flexible electronic devices. In this proposed thin film, Ag nanowire plays the role of electrical conduction, and sol-gel ZnO provides a structural medium with a high visible transmittance. Low temperature restriction in the sol-gel fabrication process prevents sufficient oxidation of Zn acetate precursors, which were solved by a post-coating treatment with ultraviolet light irradiation. Composite thin film formation was performed by spin coating methods with a mixed precursor solution or in a sequential manner. We obtained an average visible transmittance larger than 85% and a sheet resistance smaller than $50{\Omega}/sq$. After optimization in a fabricated composite transparent conductive thin film with the thickness around 100 nm. Similar experimental demonstration in a flexible substrate (polyethyleneterephthalate) was successful, which implies a promising application opportunity of this technology.

Single ZnO Nanowire Inverter Logic Circuits on Flexible Plastic Substrates (플랙시블 기판 위에서 제작된 단일 ZnO 나노선 inverter 논리 소자)

  • Kang, Jeong-Min;Lee, Myeong-Won;Koo, Sang-Mo;Hong, Wan-Shick;Kim, Sang-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.359-362
    • /
    • 2010
  • In this study, inverter logic circuits on a plastic substrate are built with two top-gate FETs in series on a single ZnO nanowire. The voltage transfer characteristics of the ZnO nanowire-based inverter logic circuit exhibit a clear inverting operation. The logic swing, gain and transition width of the inverter logic circuit is about 90 %, 1.03 and 1.2 V, respectively. The result of mechanical bending cycles of the inverter logic circuit on a plastic substrate shows that the stable performance is maintained even after many hundreds of bending cycles.