• 제목/요약/키워드: ZnO : Al thin film

검색결과 367건 처리시간 0.023초

Electrical Characterization of Amorphous Zn-Sn-O Transistors Deposited through RF-Sputtering

  • Choi, Jeong-Wan;Kim, Eui-Hyun;Kwon, Kyeong-Woo;Hwang, Jin-Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.304.1-304.1
    • /
    • 2014
  • Flat-panel displays have been growing as an essential everyday product in the current information/communication ages in the unprecedented speed. The forward-coming applications require light-weightness, higher speed, higher resolution, and lower power consumption, along with the relevant cost. Such specifications demand for a new concept-based materials and applications, unlike Si-based technologies, such as amorphous Si and polycrystalline Si thin film transistors. Since the introduction of the first concept on the oxide-based thin film transistors by Hosono et al., amorphous oxide thin film transistors have been gaining academic/industrial interest, owing to the facile synthesis and reproducible processing despite of a couple of shortcomings. The current work places its main emphasis on the binary oxides composed of ZnO and SnO2. RF sputtering was applied to the fabrication of amorphous oxide thin film devices, in the form of bottom-gated structures involving highly-doped Si wafers as gate materials and thermal oxide (SiO2) as gate dielectrics. The physical/chemical features were characterized using atomic force microscopy for surface morphology, spectroscopic ellipsometry for optical parameters, X-ray diffraction for crystallinity, and X-ray photoelectron spectroscopy for identification of chemical states. The combined characterizations on Zn-Sn-O thin films are discussed in comparison with the device performance based on thin film transistors involving Zn-Sn-O thin films as channel materials, with the aim to optimizing high-performance thin film transistors.

  • PDF

투명전도성 산화물 전극에 따른 Green OLED의 특성연구 (The Study on Characteristics of Green Organic Light Emitting Device with Transparency Conductive Oxide Electrodes)

  • 기현철;김선훈;김회종;김상기;최용성;홍경진
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.615-618
    • /
    • 2009
  • In order to apply for transparent conductive oxide(TCO), we deposited ZnO thin film on the glass at room temperature by RF magnetron sputtering method. Deposition conditions for low resistivity were optimized in our previous studies. Under the deposition condition with the RF power of 800 [W]. Sheet resistance and surface roughness of ITO and ZnO thin film were measured by Hall-effect measurement system and AFM, respectively. The sheet resistance of ITO and ZnO thin film were 7.290 [$\Omega$] and 4.882 [$\Omega$], respectively. and surface roughness were 3.634 [nm] and 0.491 [nm], respectively. Green OLED was fabricated with the structure of TPD(400 [$\AA$])/Alq3(600 [$\AA$])/LiF(5 [$\AA$])/Al(1200 [$\AA$]). Turn-on voltage of green OLED applied ITO was 7 [V] and luminance was 7,371 [$cd/m^2$]. And, Turn-on voltage of green OLED applied ZnO was 14 [V] and luminance was 6,332 [$cd/m^2$].

펄스 DC 마그네트론 스퍼터링법에 의한 ZnO:Al 박막 증착시 펄스 주파수의 영향 (Effect of Pulse Frequency on the Properties of ZnO:Al Thin Films Prepared by Pulsed DC Magnetron Sputtering)

  • 고형덕;이충선;태원필;서수정;김용성
    • 한국세라믹학회지
    • /
    • 제41권6호
    • /
    • pp.476-480
    • /
    • 2004
  • 펄스 do 마그네트론 스퍼터링법에 의해 유리 기판 위에 AZO(Al-doped ZnO) 박막을 제조하여 박막의 구조적, 전기적 및 광학적 특성을 조사하였다. 본 연구를 위해 l.0 at% Al이 도핑 된 ZnO세라믹 타켓을 사용하였다. XRD 분석을 통하여 30KHz의 펄스 주파수가 인가되었을 때 c축 배향성이 가장 우수하게 나타났고, 표면 형상 분석을 통하여 매우 치밀한 박막이 성장되었음을 알 수 있었다. 증착율은 펄스 주파수가 증가함에 따라 선형적으로 감소하였고, 30KHz의 펼스 주파수가 인가되었을 때 비저항은 8.67${\times}$$10^{-4}$ $\Omega$-cm의 가장 낮은 비저항을 나타내었으며, UV-vis. 투과율 측정결과, 평균 85% 이상의 높은 투과도를 나타내었다. 이러한 낮은 비저항 및 높은 광 투과도로 볼 때 AZO 박막은 투명 전도성 산화물 박막으로의 응용 가능성을 나타내었다.

ZnO:Al투명전도막의 전기적 특성에 미치는 Bias 전압의 영향 (Effect of substrate bias on electrical properties of ZnO:Al transparent conducting film)

  • 박강일;김병섭;임동건;이수호;곽동주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 추계학술대회 논문집 Vol.16
    • /
    • pp.408-411
    • /
    • 2003
  • Al doped Zinc Oxide(ZnO:Al) films, which is widely used as a transparent conductor in optoelectronic devices such as solar cell, liquid crystal display, plasma display panel, thermal heater, and other sensors, were prepared by using the capacitively coupled DC magnetron sputtering method. The influence of the substrate temperature, working gas pressure, discharge power and doping amounts of Al on the electrical, optical and morphological properties were investigated experimentally. The effect of bias voltage on the electrical properties of ZnO thin film were also studied. Films with lowest resistivity of $5.4{\times}10^{-4}\;{\Omega}-cm$ have been achieved in case of films deposited at 1mtorr, $400^{\circ}C$ with a substrate bias of +10V for 840nm in film thickness.

  • PDF

Atomic Layer Deposition법에 의한 Al-doped ZnO Films의 전기적 및 광학적 특성 (Electrical and Optical Properties of Al-doped ZnO Films Deposited by Atomic Layer Deposition)

  • 안하림;백성호;박일규;안효진
    • 한국재료학회지
    • /
    • 제23권8호
    • /
    • pp.469-475
    • /
    • 2013
  • Al-doped ZnO(AZO) thin films were synthesized using atomid layer deposition(ALD), which acurately controlled the uniform film thickness of the AZO thin films. To investigate the electrical and optical properites of the AZO thin films, AZO films using ALD was controlled to be three different thicknesses (50 nm, 100 nm, and 150 nm). The structural, chemical, electrical, and optical properties of the AZO thin films were analyzed by X-ray diffraction, X-ray photoelectron spectroscopy, field-emssion scanning electron microscopy, atomic force microscopy, Hall measurement system, and UV-Vis spectrophotometry. As the thickness of the AZO thin films increased, the crystallinity of the AZO thin films gradually increased, and the surface morphology of the AZO thin films were transformed from a porous structure to a dense structure. The average surface roughnesses of the samples using atomic force microscopy were ~3.01 nm, ~2.89 nm, and ~2.44 nm, respectively. As the thickness of the AZO filmsincreased, the surface roughness decreased gradually. These results affect the electrical and optical properties of AZO thin films. Therefore, the thickest AZO thin films with 150 nm exhibited excellent resistivity (${\sim}7.00{\times}10^{-4}{\Omega}{\cdot}cm$), high transmittance (~83.2 %), and the best FOM ($5.71{\times}10^{-3}{\Omega}^{-1}$). AZO thin films fabricated using ALD may be used as a promising cadidate of TCO materials for optoelectronic applications.

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • 강명길;홍창우;윤재호;곽지혜;안승규;문종하;김진혁
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

Pt/Ti 발열체가 내장된 TMA 가스 측정용 ZnO 박막 가스 센서 (ZnO thin film Gas sensors for detection of TMA gas with Pt/Ti thin film heater)

  • 류지열;박성현;최혁환;권태하
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.127-135
    • /
    • 1996
  • To increase the sensitivity and the selectivity of the sensors to TMA gas, the composition ratio and the growth conditions of the ZnO films are studied. Annealing of the ZnO films in the various time ranges and temperatures in the oxygen is carried out to enhance the stbility of the electrical resistance. Pt/Ti heater deposited on backside of the substrates in used to control the operating temperature of th esensor. The ZnO thin film sensors doped to 4.0 wt% $Al_{2}$O$_{3}$ 1.0wt.% TiO$_{2}$ and 0.2wt.% V$_{2}$O$_{5}$ exhibited a high sensitivity and an excellent selectivity for TMA gas. The sensors made with the thin films annealed at 700$^{\circ}$C for 60 minutes in the oxygen atmosphere had a good stability and linearity. The heater deposited in the ratio of 1 to 1 (Pt:Ti) had a good heating properties. The sensors fabricated using above conditions showed a good response to the actual gases of a mackerel at a step of deterioration after death.

  • PDF

Mg와 ZnO 함량변화에 따른 MAZO, MIZO 박막의 특성비교 (Characteristic Comparison of MAZO and MIZO Thin Films with Mg and ZnO Variation)

  • 장준성;김인영;정채환;문종하;김진혁
    • Current Photovoltaic Research
    • /
    • 제3권3호
    • /
    • pp.101-105
    • /
    • 2015
  • ZnO is gathering great interest for large square optoelectrical devices of flat panel display (FHD) and solar cell as a transparent conductive oxide (TCO). Herewith, Mg and IIIA (Al, In) co-doped ZnO films were prepared on SLG substrate using RF magnetron sputtering system. The effect of variation of atomic weight % of Mg and ZnO have been investigated. The atomic weight % Al and In are of 3% and kept constant throughout. The numbers of samples were prepared according to their different contents, which are $M_{3%}AZO_{94%}$, $M_{4%}AZO_{93%}-(MAZO)$ and $M_{3%}IZO_{94%}$, $M_{4%}IZO_{93%}-(MIZO)$ respectively. A RF power of 225 W and working pressure of 6 m Torr was used for the deposition at $300^{\circ}C$. All of the two thin film show good uniformity in field emission scanning electron microscopy image. $M_{3%}AZO_{94%}$ thin film shows overall better performance among the all. The film shows the best lowest resistivity, carrier concentration, mobility and Sheet resistance and is found to be are of $8.16{\times}10^{-4}{\Omega}cm$, $4.372{\times}10^{20}/cm^3$, $17.5cm^2/vs$ and $8.9{\Omega}/sq$ respectively. Also $M_{3%}AZO_{94%}$ thin film shows the relatively high optical band gap energy of 3.7 eV with high transmittance more than 80% in visible region required for the better solar cell performance.

Hydrogenation of ZnO:Al Thin Films Using Hot Filament

  • An, Il-Sin;Kim, Ok-Kyung;Lee, Chang-Hyo;Ahn, You-Shin
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제4권3호
    • /
    • pp.86-90
    • /
    • 2000
  • ZnO : Al films were prepared through the optimization process of aluminum content and substrate temperature in rf-magnetron sputtering. When hydrogenation was performed on these films using a hot filament method, all films showed improvement in conductivity although more conductive film showed less improvement. When the substrate temperature ($T_H$) was varied from $25^{\circ}C\;to\;300^{\circ}C$ during hydrogenation, the resistivity was reduced more at higher $T_H$ (more than 30% at $T_H=300^{\circ}C$) Thus, two methods were developed to suppress the dehydrogenation in ZnO : Al films : (1) capping with amorphous silicon thin film as a diffusion barrier, and (2) cooling during hydrogenation.

  • PDF

저온공정에서 제작한 ZnO:Al 박막의 특성 분석

  • 정유섭;김상모;홍정수;손인환;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.201-202
    • /
    • 2009
  • ZnO:Al transparent conductive films for solar cells were deposited on the glass substrates at room temperature by facing target sputtering (FTS) method. The sputtering targets were 100 mm diameter disks of 2w.t..%. AZO and Zn metal. ZnO:Al thin films were deposited as a function film thickness. A base pressure was $2{\times}10^{-6}$torr, and a working pressure was 1mTorr. The properties of thin films on the structural, electrical and optical properties of the deposited films were investigated using a four-point probe (Chang-min), an X-ray diffraction (Rigaku), a Hall Effect measurement (Ecopia), an UV/VIS spectrometer (HP) and a $\alpha$-step (Tencor). The lowest resistivity of film was $5.67{\times}10^{-4}[{\Omega}-cm]$ at 500nm. The average transmittance of over 80% was seen in the visible range.

  • PDF