• Title/Summary/Keyword: ZnGa$_2$O$_4$

Search Result 237, Processing Time 0.027 seconds

Luminescence Properties of $Dy^{3+}-(or Tm^{3+}-)$ Doped $Ga_2O_3$ and $ZnGa_2O_4$ Phosphors

  • Ryu, Ho-Jin;Park, Hee-Dong
    • The Korean Journal of Ceramics
    • /
    • v.3 no.2
    • /
    • pp.134-138
    • /
    • 1997
  • $Dy^{3+}-(or Tm^{3+}-)$ doped $Ga_2O_3 \;and\; ZnGa_2O_4$ phosphors were prepared using the solid state reaction method to investigate their photoluminescent characteristics. Under 254 nm excitation, $Dy^{3+}-doped Ga2_O_3$ exhibited two emission bands of 460~505nm and 570~600nm. On the other hand, $Dy^{3+}-(or Tm^{3+}-)$ doped $ZnGa_2O_4 $phosphors exhibited a broad-band emission extending from 330 nm to 610 nm, peaking at about 430 nm(or 370 nm). In this study, an emission peak shift of nealy 50 nm towards longer wavelength region was observed with $Dy^{3+}$ doping in the $ZnGa_2O_4 $.

  • PDF

Doping and Annealing Effect on Luminescent Characteristics of $_2$ Phosphor Thin Films (ZnGa$_2$O$_4$형광박막의 발광특성에 미치는 도핑 및 어닐리의 효과)

  • 정영호;정승묵;김석범;김영진
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.619-625
    • /
    • 1998
  • Mn doped {{{{ {Zn {Ga }_{2 }O }_{4 } }} thin film phosphors were prepared on Si(100) wafers and ITO coated glass substrates by rf magnetron sputtering technique and the effects of the substrates dopant and the sputtering paramet-ers were analyzed, Changes of the oreintation were observed after annealine tratment. The grain size of {{{{ {Zn {Ga }_{2 }O }_{4 } }} : Mn thin film deposited on Si wafer was smaller than that on ITO/glass substrate which resulted in higher PL intensity. The PL spectra of Mn doped {{{{ {Zn {Ga }_{2 }O }_{4 } }} thin films showed sharp green luminescence spec-trum. According to CL spectrum it could be concluded that Mn ions acted as an actuator for green emission by substituting Zn atom sites.

  • PDF

Growing and Luminous Characterization of ZnGa2O4:Mn Thin Film Deposited by RF Magnetron Sputtering (RF 스퍼터링 방법에 의한 ZnGa2O4:Mn 박막의 성장거동과 발광특성)

  • 정승묵;김영진
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.652-656
    • /
    • 2003
  • The green emitting phosphor, BnGa$_2$O$_4$:Mn thin films with spinel structure were deposited by rf magnetron sputtering at various Ar/O$_2$ ratios. Thin film phosphors were heat-treated in air and $N_2$+vacuum atmosphere, respectively. Effects of Ar/O$_2$ ratios and annealing conditions on the structural and photoluminescence (PL) and cathodeluminescence (CL) properties were investigated. Luminous properties were more improved by inhibiting the films from contacting with oxygen during heat treatment.

Low-voltage cathodoluminescent Characteristics of ZnGa$_2$O$_4$ : Mn phosphors

  • 조성희;유재수;이종덕;이중환
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.1
    • /
    • pp.57-62
    • /
    • 1997
  • Green-emitting $ZnGa_2O_4$ : Mn phosphors were synthesized by a thermal method and their low-voltage cathodoluminescent characteristics were examined for the field emitter display (FED) application. Low efficiency of $ZnGa_2O_4$ : Mn phosphors could be ascribed to the low penetration depth of into phosphors, which might results in charge accumulation on the phosphors screen. For increasing cathodoluminescent of $ZnGa_2O_4$ : Mn under low voltage excitation, wide band-gap oxide materials were added to the $ZnGa_2O_4$: Mn powder. It is found that the luminance can be increased by 20%. Measurement of leakage current on the phosphor screen shows that the enhancement of low-voltage cathodoluminescent by additive materials is mainly due to the consumption of surface charges on the phosphor.

  • PDF

Preparation and Photoluminescence Properties of the ZnGa₂O₄: Mn Phosphor by Polymerized Complex Precursor

  • 조두환;정하균;석상일;박도순
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.608-612
    • /
    • 1997
  • The preparation and photoluminescence properties of $ZnGa_2O_4$ : Mn phosphor are presented. Under 254 nm excitation $Zn_1-_xMn_xGa_2O_4$ exhibits the green emission band at 506 nm wavelength and maximum intensity where x=0.005. The manganese activated $ZnGa_2O_4$ phosphor prepared by the polymerized complex method shows a remarkable increase in the emission intensity and is smaller particle size than that prepared by conventional method. Also, electron paramagnetic resonance study on $ZnGa_2O_4$ : Mn powders indicates that the increase in emission intensity after firing treatment in mild hydrogen reducing atmosphere is due to the conversion of the higher valent manganese to $Mn^{2+}$.

Determination of optical constants and structures of ZnO:Ga films using spectroscopic ellipsometry (분광타원법을 이용한 ZnO:Ga 박막의 광학상수 및 두께 결정)

  • 신상균;김상준;김상열;유윤식
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.38-39
    • /
    • 2003
  • 전기적 저항이 낮은 투명 박막 물질은 현재 flat panel display, electroluminescent device, thin film transistor, solar cell 등 여러 분야에서 연구되고 있다. 그 중에서도 특히 ZnO:Ga는 현재 많이 쓰이는 ITO보다 화학적, 열적으로 안정한 상태를 보이는 투명 전도 산화막 물질로써 본 연구에서는 분광타원법을 이용하여 ZnO:Ga의 광학적 특성을 분석하였다. 본 연구를 위한 시료는 온도에 따른 ZnO:Ga/Sapphire 박막, $O_2$의 압력에 따른 ZnO:Ga/Sapphire 박막, Ga의 doping 농도에 따른 ZnO:Ga/Sapphire 박막으로 제작하였으며, 위상변조형 분광타원계(spectroscopic Phase Modulated Ellipsometer, Jobin-Yvon, UVISEL)를 사용하여 측정대역을 0.74 ~ 4.5 eV, 입사각을 70$^{\circ}$로 하여 측정하였다. (중략)

  • PDF

Effect of Moisture on Cu(In,Ga)Se2 Solar Cell with (Ga,Al) Co-doped ZnO as Window Layer ((Ga,Al)이 도핑된 ZnO를 투명전극으로 가진 Cu(In,Ga)Se2 태양전지에 수분이 미치는 영향)

  • Yang, So Hyun;Bae, Jin A;Song, Yu Jin;Jeon, Chan Wook
    • Current Photovoltaic Research
    • /
    • v.5 no.4
    • /
    • pp.135-139
    • /
    • 2017
  • We fabricated two different transparent conducting oxide thin films of ZnO doped with Ga ($Ga_2O_3$ 0.9 wt%) as well as Al ($Al_2O_3$ 2.1 wt%) (GAZO) and ZnO doped only with Al ($Al_2O_3$ 3 wt%) (AZO). It was investigated how it affects the moisture resistance of the transparent electrode. In addition, $Cu(In,Ga)Se_2$ thin film solar cells with two transparent oxides as front electrodes were fabricated, and the correlation between humidity resistance of transparent electrodes and device performance of solar cells was examined. When both transparent electrodes were exposed to high temperature distilled water, they showed a rapid increase in sheet resistance and a decrease in the fill factor of the solar cell. However, AZO showed a drastic decrease in efficiency at the beginning of exposure, while GAZO showed that the deterioration of efficiency occurred over a long period of time and that the long term moisture resistance of GAZO was better.

Fabrication and characterization of Zn-O-Ga structures by RF magnetron co-sputtering method

  • Hwang, Chang-Su;Park, In-Cheol;Kim, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.201-201
    • /
    • 2010
  • 본 연구에서는 RF magnetron co-sputtering을 이용하여 Zn-O-Ga 구성비에 따른 광투과도 및 전기적 특성을 연구하였다. 타겟으로 ZnO 및 $Ga_2O_3$ 소결체를 이용하였으며, 두 개의 RF magnetron sputter의 RF power를 동시에 조절하여 타겟의 구성비를 조절하였으며, 기판과 타겟의 거리를 25 mm~75 mm 범위 내에 조절하여 거리에 따른 Zn-O-Ga 박막의 광투과 특성 및 전기적 특성을 관찰하였다. $Ga_2O_3$ 소결체의 magnetron sputter의 RF power를 30 watt에서 100 watt로 증가함에 따라 박막내의 Ga 성분은 0.5%에서 7.4%로 증가하였으며 Zn 성분은 46.3%에서 40.9%로 O성분은 53.2%에서 51.6%로 각각 줄어들었다. 이에 따라 ZnO의 우선방위 (002) 결정각($2{\theta}$)은 34.24에서 33.87로 줄어들었으며, 이동도 $5.5\;cm^2/Vs$ 에서 $1.99\;cm^2/Vs$ 정도로 감소하는 경향을 보였다. 광투과도는 가시광선 영역에서 85% 이상 보였으며, carrier 밀도는 $0.5\;{\sim}\;4.0^*10^{20}/cm^3$로 증가함에 따라 이동도는 $1.5{\sim}5.5\;cm^2/Vs$로 투명전도막의 특성을 보였다.

  • PDF

Photoluminescence Characteristics of the ZnGa2O4 Phosphor Thin Films as a Function of Post-annealing Temperature (후열처리 온도에 따른 ZnGa2O4 형광체 박막의 발광 특성)

  • Yi, Soung-Soo;Jeong, Jung-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.60-65
    • /
    • 2002
  • $ZnGa_2O_4$ thin film phosphors have been deposited using a pulsed laser deposition method on Si(100) substrates at a substrate temperature of $550^{\circ}C$ with oxygen pressures of 100mTorr, and subsequently to investigate their photoluminescence characteristics after post-annealed at $600^{\circ}C$ and $700^{\circ}C$. As a result for X-ray diffraction, $Ga_2O_3$ shape appeared with increasing annealing temperature. The luminescent spectra show a broad band extending from 350 to 600nm peaking at 460nm. A post-annealing treatment of $ZnGa_2O_4$ thin films led to the different shape of luminescent intensity and grain size.

The Structural Investigation for the Enhancement of Electrical Conductivity in Ga-doped ZnO Targets

  • Yun, Sang-Won;Seo, Jong-Hyeon;Seong, Tae-Yeon;An, Jae-Pyeong;Gwon, -Hun;Lee, Geon-Bae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.243.2-243.2
    • /
    • 2011
  • ZnO materials with a wide band gap of approximately 3.3 eV has been used in transparent conducting oxides (TCO) due to exhibitinga high optical transmission, but its low conductivity acts as role of a limitation for conducting applications. Recently, Ga or Al-doped ZnO (GZO, AZO) becomes transparent conducting materials because of high optical transmission and excellent conductivity. However, the fundamental mechanism underlying the improvement of electrical conductivity of the GZO is still the subject of debate. In this study, we have fully investigated the reasons of high conductivity through the characterization of plane defects, crystal orientation, doping contents, crystal structure in Zn1-xGaxO (x=0, 3, 5.1, 5.6, 6.6 wt%). We manufactured Zn1-xGaxO by sintering ZnO and Ga2O3 powers, having a theoretical density of 99.9% and homogeneous Ga-dopant distribution in ZnO grains. The GZO containing 5.6 wt% Ga represents the highest electrical conductivity of $7.5{\times}10^{-4}{\Omega}{\cdot}m$. In particular, many twins and superlattices were induced by doping Ga in ZnO, revealed by X-ray diffraction measurements and TEM (transmission electron microscopy) observations. Twins developed in conventional ZnO crystal are generally formed at (110) and (112) planes, but we have observed the twins at (113) plane only, which is the first report in ZnO material. Interestingly, the superlattice structure was not observed at the grains in which twins are developed and the opposite case was true. This structural change in the GZO resulted in the difference of electrical conductivity. Enhancement of the conductivity was closely related to the extent of Ga ordering in the GZO lattice. Maximum conductivity was obtained at the GZO with a superlattice structure formed ideal ordering of Ga atoms.

  • PDF