• Title/Summary/Keyword: ZnGa$_2$O$_4$

Search Result 237, Processing Time 0.03 seconds

Field emission lamp for LCD backlight based on RGB phosphors and vertically-aligned CNTs

  • Park, Boo-Won;Choi, Nam-Sik;Kim, Sung-Hoon;Jeong, Yun-Tae;Kim, Jong-Su
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1545-1546
    • /
    • 2007
  • Zinc gallate-based RGB phosphors and vertically aligned carbon nanotube emitters are prepared for flat field-emission lamp. The blend phosphors of blue $ZnGa_2O_4$, green $ZnGa_2O_4:Mn^{2+}$ and red $ZnGa_2O_4:Cr^{3+}$ are coated on the front glass, and the carbon nanotubes are chemically bonded on the rear ITO glass as a cathode.

  • PDF

Structural and optical properties of Ga-doped ZnO nanowires synthesized by pulsed laser deposition in furnace (갈륨 도핑된 ZnO 나노와이어의 합성과 구조적 광학적 특성 분석)

  • Kim, Chang-Eun;Ahn, Byung-Du;Jean, Kyung-Ah;Son, Hyo-Jeong;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.46-47
    • /
    • 2006
  • Ga-doped ZnO nanowires have been synthesized by pulsed laser deposition (PLD) in furnace on gold coated (0001) sapphire substrates. The effect of repetition rate on structural and optical properties of Ga-doped ZnO nanowires are investigated. By controlling repetition rate, the diameter of nanowires is varied between about 60 and 100 nm, and the length of nanowires is varied between about 2 and 4 um. The X-ray diffraction (XRD) reveals the structural defects induced by the Ga doping. The room temperature photoluminescence (PL) spectra of Ga-doped ZnO nanowires show strong UV emission between 382.394 and 385.279 nm with negligible visible emission.

  • PDF

용액 방법을 사용한 TIZO 박막 트랜지스터 제작 및 전기적 특성 조사

  • Seo, Ga;Jeong, Ho-Yong;Lee, Se-Han;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.400-400
    • /
    • 2012
  • 산화물 반도체는 넓은 에너지갭을 가지고 높은 이동성과 높은 투명성을 가지기 때문에 초고 속 박막 트랜지스터(Thin film transistor; TFT)에 많이 응용되고 있다. 그러나 ZnO 및 $In_2O_3$ 산화물 반도체를 박막트랜지스터에 사용할 경우 소자가 불안정하여 전기적 성질이 저하되고 문턱전압의 이동이 일어난다. TFT에 사용되는 산화물 반도체로는 GaInZnO, ZrInZnO, HfInZnO 및 GaSnZnO의 전기적 특성에 관한 연구가 많이 되었다. 그러나 titanium-indium-zinc-oxide (TIZO) TFT에 대한 연구는 비교적 적게 수행 되었다. 본 연구에서는 TFTs의 안정성을 향상하기 위하여 TFT의 채널로 사용되는 TiInZnO를 형성하는데 간단한 제조 공정과 낮은 비용의 용액 증착방법을 사용하였다. 졸-겔 전해액은 Titanium (IV) isopropoxide $[Ti(OCH(CH_3)_2)_4]$, 0.1 M Zinc acetate dihydrate $[Zn(CH_3COO)_2{\cdot}2H_2O]$ 그리고 indium nitrate hydrate $[In(NO_3)_3{\cdot}xH_2O]$을 2-methoxyethanol의 용액에 합성하였다. $70^{\circ}C$에서 한 시간 동안 혼합 하였다. Ti의 몰 비율은 10%, 20% 및 40% 로 각각 달리하여 제작하였다. $SiO_2$층 위에 2,500 rpm 속도로 25초 동안 스핀 코팅하여 TFT를 제작하였다. TIZO 박막에 대한 X-선 광전자 스펙트럼 관측 결과는 Ti 몰 비율이 증가함에 따라 Ti 2p1/2피크의 세기가 증가함을 보여주었다. TiZO 박막에 Ti 원자를 첨가하면 $O^{2-}$ 이온이 감소하기 때문에 전하의 농도가 변화하였다. 전하 농도의 변화는 TiZO 채널을 사용하여 제작한 TFT의 문턱전압을 양 방향으로 이동 하였으며 off-전류를 감소하였다. TiZO 채널을 사용하여 제작한 TFT의 드레인 전류-게이트 전압 특성은 on/off비율이 $0.21{\times}107$ 만큼 크며 이것은 TFT 소자로서 우수한 성능을 보여주고 있다.

  • PDF

P-TYPE Zn Diffused by Ampoule-tube Method into $GaAs_{0.40}P_{0.60}$ and the Properties of Electroluminescence (기상 확산법에 의한 P-Type Zn 확산과 GaAs0.6P0.4의 전계발광 특성)

  • Kim, Da-Doo;So, Soo-Jin;Song, Min-Jong;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.510-513
    • /
    • 2003
  • Our Zn diffusion into n-type $GaAs_{0.40}P_{0.60}$ used ampoule-tube method to increase IV. N-type epitaxial wafers were preferred by $H_2SO_4$-based pre-treatment. $SiO_2$ thin film was deposited by PECVD for some wafers. Diffusion times and diffusion temperatures respectability are 1, 2, 3 hr and 775, $805^{\circ}C$. LED chips were fabricated by the diffused wafers at Fab. The peak wavelength of all chips showed about $625{\sim}650\;nm$ and red color. The highest IV is about 270 mcd at the diffusion condition of $775^{\circ}C$, 3h for the wafers which didn't deposit $SiO_2$ thin films. Also, the longer diffusion time is the higher IV for the wafers which deposit $SiO_2$ thin films.

  • PDF

Zn Diffusion using by Open-tube Method into n-type $GaAS_{0.60}P_{0.40}$ and the Properties of Electroluminescence (Open-tube 방식을 이용한 n-type $GaAS_{0.60}P_{0.40}$에 Zn 확산과 전계발광 특성)

  • Pyo, Jin-Goo;So, Soon-Jin;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.63-66
    • /
    • 2003
  • To diffuse Zn at solid-state, the $SiO-2$/ZnO/$SiO_2$ wafers was made by PECVD and RF Sputter. Thicknesses of bottom $SiO_2$ and cap $SiO_2$ was about 500 ${\AA}$ and about 3500 ${\AA}$. Diffusion temperatures were $760^{\circ}C$, $780^{\circ}C$, and $800^{circ}C$, and diffusion times were 1, 2, 3, 4, 5, and 6 hr. LED chips were fabricated by the diffused wafers at Fab. The peak wavelength of all chips showed about 625~650 nm and red color. Main reason for Iv change was by diffusion temperature not diffusion time. The lower temperature was the higher Iv. We thick that these properties is because of the very high diffusion temperature.

  • PDF

Multicomponent IGZO Ceramics for Transparent Electrode Target Fabricated from Oxides and Nitrates (산화물과 질산염으로 제조한 투명전극 타깃용 다성분계 IGZO 세라믹스)

  • Lee, Hyun-Kwun;Yoon, Ji-Hye;Cho, Kyeong-Sik
    • Journal of Powder Materials
    • /
    • v.26 no.5
    • /
    • pp.375-382
    • /
    • 2019
  • Homogeneous multicomponent indium gallium zinc oxide (IGZO) ceramics for transparent electrode targets are prepared from the oxides and nitrates as the source materials, and their properties are characterized. The selected compositions were $In_2O_3:Ga_2O_3:ZnO$ = 1:1:2, 1:1:6, and 1:1:12 in mole ratio based on oxide. As revealed by X-ray diffraction analysis, calcination of the selected oxide or nitrides at $1200^{\circ}C$ results in the formation of $InGaZnO_4$, $InGaZn_3O_6$, and $InGaZn_5O_8$ phases. The 1:1:2, 1:1:6, and 1:1:12 oxide samples pressed in the form of discs exhibit relative densities of 96.9, 93.2, and 84.1%, respectively, after sintering at $1450^{\circ}C$ for 12 h. The $InGaZn_3O_6$ ceramics prepared from the oxide or nitrate batches comprise large grains and exhibit homogeneous elemental distribution. Under optimized conditions, IGZO multicomponent ceramics with controlled phases, high densities, and homogeneous microstructures (grain and elemental distribution) are obtained.

Al, Ga, In이 도핑된 ZnO 기반의 투명 전도막 제작

  • Kim, Gyeong-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.138-138
    • /
    • 2009
  • Al, Ga and In doped ZnO thin film were prepared by faing targets sputtering as a function of oxygen gas contents at R.T. Base pressure was $2{\times}10^{-6}torr$, and working pressure was 1mTorr. The properties of thin films on the electrical and optical properties of the deposited films were investigated by using a four-point probe (Chang-min), a Hall Effect measurement (Ecopia) and an UV/VIS spectrometer (HP). The minimum resistivities of AZO, GZO and IZO thin film were $6.5{times}10^{-4}[{\Omega}-cm],5.5{\times}10^{-4}[{\Omega}-cm]$ and $4.29{\times}10^{-4}[{\Omega}-cm]$. The average transmittance of over 80% was seen in the visible range.

  • PDF

Low voltage operating $InGaZnO_4$ thin film transistors using high-k $MgO_{0.3}BST_{0.7}$ gate dielectric (고유전 $MgO_{0.3}BST_{0.7}$ 게이트 절연막을 이용한 $InGaZnO_4$ 기반의 트랜지스터의 저전압 구동 특성 연구)

  • Kim, Dong-Hun;Cho, Nam-Gyu;Chang, Young-Eun;Kim, Ho-Gi;Kim, Il-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.40-40
    • /
    • 2008
  • $InGaZnO_4$ based thin film transistors (TFTs) are of interest for large area and low cost electronics. The TFTs have strong potential for application in flat panel displays and portable electronics due to their high field effect mobility, high on/off current ratios, and high optical transparency. The application of such room temperature processed transistors, however, is often limited by the operation voltage and long-tenn stability. Therefore, attaining an optimum thickness is necessary. We investigated the thickness dependence of a room temperature grown $MgO_{0.3}BST_{0.7}$ composite gate dielectric and an $InGaZnO_4$ (IGZO) active semiconductor on the electrical characteristics of thin film transistors fabricated on a polyethylene terephthalate (PET) substrate. The TFT characteristics were changed markedly with variation of the gate dielectric and semiconductor thickness. The optimum gate dielectric and active semiconductor thickness were 300 nm and 30 nm, respectively. The TFT showed low operating voltage of less than 4 V, field effect mobility of 21.34 cm2/$V{\cdot}s$, an on/off ratio of $8.27\times10^6$, threshold voltage of 2.2 V, and a subthreshold swing of 0.42 V/dec.

  • PDF

Low Power Consumption Scan Driver Using Depletion-Mode InGaZnO Thin-Film Transistors (공핍 모드 InGaZnO 박막 트랜지스터를 이용한 저소비전력 스캔 구동 회로)

  • Lee, Jin-Woo;Kwon, Oh-Kyong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.15-22
    • /
    • 2012
  • A low power consumption scan driver using depletion-mode n-type InGaZnO thin-film transistors is proposed. The proposed circuit uses 2 clock signals and generates the non-overlap output signals without the additional masking signals and circuits. The power consumption of the proposed circuit is decreased by reducing the number of the clock signals and short circuit current. The simulation results show that the proposed circuit operates successfully when the threshold voltage of TFT is varied from -3.0V to 1.0V. The proposed scan driver consumes 4.89mW when the positive and negative supply voltage is 15V and -5V, respectively, and the operating frequency is 46KHz on the XGA resolution panel.