• 제목/요약/키워드: Zn-coated

검색결과 370건 처리시간 0.028초

아연 코팅과 열처리에 따른 알루미늄 열교환기 소재의 부식 (Effects of Zn Coating and Heat Treatment on the Corrosion of Aluminum Heat Exchanger Tubes)

  • 조수연;김재중;장희진
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.24-32
    • /
    • 2019
  • The effects of zinc coating and heat treatment on the corrosion resistance of aluminum alloys including A1100 and the modified A3003, used as heat exchanger tube were investigated in this study. The grain size of the heat-treated specimen is larger than that of the specimen without heat treatment, but the grain size did not significantly affect the corrosion behavior. The concentration of zinc was noted at 11.3 ~ 31.4 at.% for the as-received Zn-coated samples and reduced to 1.2 ~ 2.4 at.% after the heat treatment, as measured by the scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS) on the surface. The concentration of oxygen is 22 ~ 46 at.% for the zinc coated specimens while noted at 7.4 ~ 12.8 at.% for the specimens after the removal of the coating. The corrosion behavior depended largely on the concentrations of zinc, aluminum, and oxygen on the specimen surface, but not on the Mo content. The corrosion potential was high and the corrosion rate was low for a specimen with a low zinc content, a high aluminum content, and a high oxygen content.

Hydrogen Aging During Hole Expanding Tests of Galvanized High Strength Steels Investigated Using a Novel Thermal Desorption Analyzer for Small Samples

  • Melodie Mandy;Maiwenn Larnicol;Louis Bordignon;Anis Aouafi;Mihaela Teaca;Thierry Sturel
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.145-153
    • /
    • 2024
  • In the automotive industry, the hole expanding test is widely used to assess the formability of punched holes in sheets. This test provides a good representation of formability within the framework defined by the ISO 16630 standard. During hole expanding tests on galvanized high strength steels, a negative effect was observed when there was a delay between hole punching and expansion, as compared to performing both operations directly. This effect is believed to be caused by hydrogen aging, which occurs when hydrogen diffuses towards highly-work hardened edges. Therefore, the aim of this study is to demonstrate the migration of hydrogen towards work-hardened edges in high strength Zn-coated steel sheets using a novel Thermal Desorption Analyzer (TDA) designed for small samples. This newly-developed TDA setup allows for the quantification of local diffusible hydrogen near cut edges. With its induction heating and ability to analyze Zn-coated samples while reducing artifacts, this setup offers flexible heat cycles. Through this method, a hydrogen gradient is observed over short distances in shear-cut galvanized steel sheets after a certain period of time following punching.

나노급 다이아몬드 파우더에 ALD로 제조된 ZnO 박막 연구 (Microstructure of ZnO Thin Film on Nano-Scale Diamond Powder Using ALD)

  • 박종성;송오성
    • 한국진공학회지
    • /
    • 제17권6호
    • /
    • pp.538-543
    • /
    • 2008
  • 나노급 다이아몬드는 최근 폭발법이나 증착법에 의한 신공정으로 100 nm 이하의 분말형태의 제조가 가능하다. 나노급 다이아몬드의 소결을 이용하면 이상적인 연마기기의 제작이 가능하다. 이러한 나노급 다이아몬드의 소결 공정에서 생기는 비이상적인 나노결정의 결정립성장과 다이아몬드 결합장애를 방지하기 위해서 나노급 무기물을 균일하게 코팅하는 공정개발이 필요하다. 본 연구에서는 나노급 다이아몬드의 소결 특성을 향상시키기 위해서 ALD(atomic layer deposition)을 이용하여 진공에서 $20{\sim}30\;nm$ 두께의 ZnO 박막을 코팅해 보았다. 나노급 다이아몬드 분말 전면에 경제적으로 ZnO ALD를 위해서 기존의 기계적 진동효과 또는 전용 fluidized bed reactor를 대치하여 새로이 20 mm 석영튜브 안에 다이아몬드 분말을 넣고 다공성 유리필터로 막은 후 펄스와 퍼지 공정시의 압력에 의한 다이아몬드의 부유를 이용한 변형된 fluidized bed 공정을 채용하였다. 다공성 유리필터로 양쪽이 막힌 석영튜브 안에 전구체 DEZn (diethylzinc : $C_4H_{10}Zn$)와 반응기체 $H_2O$를 사용하여 ZnO 박막을 캐니스터 온도 $10^{\circ}C$에서 원자층증착하였다. 공정 순서 및 반응물질 주입 시간은 DEZn pulse-0.1초, DEZn purge-20초, $H_2O$ pulse-0.1초, $H_2O$ purge-40초와 같이 설정하였으며, 이 네 단계를 1 cycle로 정의하여 100 cycle 반복 실시하였다. 다이아몬드 분말과 ZnO 박막이 증착된 다이아몬드 분말의 미세구조를 확인하기 위하여 투과전자현미경 (transmission electron microscope)을 이용하였다. TEM 측정결과, ALD 증착 전 나노급 다이아몬드 분말의 직경이 약 $70{\sim}120\;nm$이었고 사면체, 육면체 등의 다양한 형태를 보임을 확인하였다. ZnO 박막이 ALD코팅된 다이아몬드 분말의 직경은 약 $90{\sim}150\;nm$이었고, 다이아몬드 분말과 ZnO의 명암차이에 의해 약 $20{\sim}30\;nm$ 두께의 균일한 ZnO 박막이 다각형 형태의 다이아몬드 파우더 표면에 성공적으로 증착되었음을 확인하였다.

Photoelectrochemical Cell Study on Closely Arranged Vertical Nanorod Bundles of CdSe and Zn doped CdSe Films

  • Soundararajan, D.;Yoon, J.K.;Kwon, J.S.;Kim, Y.I.;Kim, S.H.;Park, J.H.;Kim, Y.J.;Park, D.Y.;Kim, B.C.;Wallac, G.G.;Ko, J.M.
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권8호
    • /
    • pp.2185-2189
    • /
    • 2010
  • Closely arranged CdSe and Zn doped CdSe vertical nanorod bundles were grown directly on FTO coated glass by using electrodeposition method. Structural analysis by XRD showed the hexagonal phase without any precipitates related to Zn. FE-SEM image showed end capped vertically aligned nanorods arranged closely. From the UV-vis transmittance spectra, band gap energy was found to vary between 1.94 and 1.98 eV due to the incorporation of Zn. Solar cell parameters were obtained by assembling photoelectrochemical cells using CdSe and CdSe:Zn photoanodes, Pt cathode and polysulfide (1M $Na_2S$ + 1M S + 1M NaOH) electrolyte. The efficiency was found to increase from 0.16 to 0.22 upon Zn doping. Electrochemical impedance spectra (EIS) indicate that the charge-transfer resistance on the FTO/CdSe/polysulfide interface was greater than on FTO/CdSe:Zn/polysulfide. Cyclic voltammetry results also indicate that the FTO/CdSe:Zn/polysulfide showed higher activity towards polysulfide redox reaction than that of FTO/CdSe/polysulfide.

Zn-Al-Mg 합금의 압출 시 미세조직 변화에 관한 연구 (Study on the Microstructure Evolution during Extrusion of Zn-Al-Mg alloy)

  • 서위걸;;이희남;양동주;박순균;최시훈
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.344-351
    • /
    • 2023
  • The use of Zn-Al-Mg alloy coatings for enhancing the corrosion resistance of steel sheets is gaining prominence over traditional Zn coatings. There is a growing demand for the development of thermal spray wires made from Zn-Al-Mg alloys, as a replacement for the existing wires produced using Al and Zn. This is particularly crucial to secure corrosion resistance and durability in the damaged areas of coated steel sheets caused by deformation and welding. This study focuses on the casting and extrusion processes of Zn-2Al-1Mg alloy for the fabrication of such spray wires and analyzes the changes in microstructure during the extrusion process. The Zn-2Al-1Mg alloy, cast in molds, was subjected to a heat treatment at 250 ℃ for 3 hours prior to extrusion. The extrusion process was carried out by heating both the material and the mold up to 300 ℃. Microstructural analysis was conducted using FE-SEM and EDS to differentiate each phase. The mechanical properties of the cast specimen were evaluated through compression tests at temperatures ranging from 200 to 300 ℃, with strain rates of 0.1 to 5 sec-1. Vickers hardness testing was utilized to assess the inhomogeneity of mechanical properties in the radial direction of the extruded material. Finite Element Analysis (FEA) was employed to understand the inhomogeneity in stress and strain distribution during extrusion, which aids in understanding the impact of heterogeneous deformation on the microstructure during the process.

고대 금동유물의 금도금(金鍍金) 피막(被膜)에 관한 연구 (A Study on the Gold Film Coated on the Ancient Gilt Bronze)

  • 임선기;강성군
    • 보존과학회지
    • /
    • 제1권1호
    • /
    • pp.60-79
    • /
    • 1992
  • In relation to the scientific conservation treatment of ancient gilt bronze, the gold film coated on the bronze excavated from Hwangnam Great Tomb of Old Silla Kingdom(A. D. 5C) was studied in the view of coating technology and metallurgy of bronze. The uniform and dense gold film containing $2.44\sim12.40%$ of Hg with the thickness of $5.99\sim12.97{\mu}m$ was found to be coated on the bronze objects by amalgam coating method. On silver objects, the film with the thickness of $19.96{\mu}m$ was coated also continously and uniformly with gold by the same method. The bronze objects was fabricated by forging technique and contained almost $4.7\sim11.5%$ of Pb. Its microstructure was $\alpha-phase$ solid solution including Pb segregation in the matrix. The amount of $0.4\sim2.0%$ Zn was added in the bronze for the purpose of easy fabricating of Cu alloy. Based on the data studied, the gold film on bronze sample was reproduced by amalgam coating method and compared with the ancient gold film.

  • PDF

아연도금 강판의 $CO_2$ 레이저 용접에서 겹치기 용접의 FEM 시뮬레이션 (FEM Simulation of Lap Joint in $CO_2$ Laser Welding of Zn-coated Steel)

  • 김재도;조치용
    • Journal of Welding and Joining
    • /
    • 제16권1호
    • /
    • pp.52-62
    • /
    • 1998
  • Laser beam welding of zinc-coated steel, especially lap joints, has a problem of zinc vapor produced during welding which has a low vaporization temperature of 906.deg. C. It is lower than the melting temperature of steel (1500.deg. C). The high pressure formed by vaporization of zinc during laser welding splatters the molten pool and creates porosities in weld. During laser lap welds of zinc-coated steel sheets with CW CO$_{2}$ laser the gap size has been analyzed and simulated using a FEM. The simulation has been carried out in the range of gap aetween 0 and 0.16 mm. The vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In the case of too small gap size, zinc gas has not ejected and existed between two sheets. Therefore heat was difficult to conduct from the upper sheet to lower sheet and the upper sheet could over-melted. In the case of large gap size the zinc gas has been prefectly ejected but only a part of lower sheet has melted. The optimum range of gap size in the lap welds of zinc-coated steel sheets has been calculated to be between 0.08 and 0.12 mm. According to the comparison of experiment, the simulation is proved to be acceptable and applicable to laser lap welds.

  • PDF

Fabrication of a Cu2ZnSn(S,Se)4 thin film solar cell with 9.24% efficiency from a sputtered metallic precursor by using S and Se pellets

  • 강명길;홍창우;윤재호;곽지혜;안승규;문종하;김진혁
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.86.2-86.2
    • /
    • 2015
  • Cu2ZnSn(S,Se)4 thin film solar cells have been fabricated using sputtered Cu/Sn/Zn metallic precursors on Mo coated sodalime glass substrate without using a toxic H2Se and H2S atmosphere. Cu/Sn/Zn metallic precursors with various thicknesses were prepared using DC magnetron sputtering process at room temperature. As-deposited metallic precursors were sulfo-selenized inside a graphite box containing S and Se pellets using rapid thermal processing furnace at various sulfur to selenium (S/Se) compositional ratio. Thin film solar cells were fabricated after sulfo-selenization process using a 65 nm CdS buffer, a 40 nm intrinsic ZnO, a 400 nm Al doped ZnO, and Al/Ni top metal contact. Effects of sulfur to selenium (S/Se) compositional ratio on the microstructure, crystallinity, electrical properties, and cell efficiencies have been studied using X-ray diffraction, Raman spectroscopy, field emission scanning electron microscope, I-V measurement system, solar simulator, quantum efficiency measurement system, and time resolved photoluminescence spectrometer. Our fabricated Cu2ZnSn(S,Se)4 thin film solar cell shows the best conversion efficiency of 9.24 % (Voc : 454.6 mV, Jsc : 32.14 mA/cm2, FF : 63.29 %, and active area : 0.433 cm2), which is the highest efficiency among Cu2ZnSn(S,Se)4 thin film solar cells prepared using sputter deposited metallic precursors and without using a toxic H2Se gas. Details about other experimental results will be discussed during the presentation.

  • PDF

수소 플라즈마 처리된 산화 아연 나노선의 자외선 발광 특성향상 (Improvement of UV Photoluminescence of Hydrogen Plasma Treated ZnO Nanowires)

  • 강우승;박성훈
    • 한국진공학회지
    • /
    • 제22권6호
    • /
    • pp.291-297
    • /
    • 2013
  • Au 촉매를 코팅한 사파이어 기판 상에서 산화아연과 흑연 분말을 혼합한 분말재료를 이용하여 VLS (vapor-liquid-solid) 법으로 산화아연 반도체 나노선을 합성하였다. 제조된 산화아연 나노선은 380 nm에서 근 자외선 영역의 NBE (near-band edge) 발광과 600 nm 부근의 가시광선 영역에서 넓게 퍼져 발광하는 상대적으로 강한 DL (deep level) 발광이 확인되었다($I_{NBE}/I_{DL}$ <1). 산화아연 나노선을 효율적인 단일 파장 자외선 발광체에 적용될 수 있도록 NBE 발광을 극대화함과 동시에 DL 발광을 억제시키기 위하여 본 실험에서는 합성된 산화아연 나노선에 수소 플라즈마 처리를 하였다. 플라즈마 처리시간이 길어짐에 따라(120초 이상) 발광특성의 향상정도는 점차로 감소하였지만, 수소 플라즈마 처리를 통해 나노선 내부에 존재하는 불순물 제어 등으로 다소 짧은 시간의 플라즈마 처리로(90초 이내) DL발광대비 NBE발광의 세기가 약 4배로 향상됨을 확인 하였다($I_{NBE}/I_{DL}$ ~4).

물분해용 Cu2O 박막/ZnO 나노막대 산화물 p-n 이종접합 광전극의 광전기화학적 특성 (Photoelectrochemical Properties of a Cu2O Film/ZnO Nanorods Oxide p-n Heterojunction Photoelectrode for Solar-Driven Water Splitting)

  • 박정환;김효진;김도진
    • 한국재료학회지
    • /
    • 제28권4호
    • /
    • pp.214-220
    • /
    • 2018
  • We report on the fabrication and photoelectrochemical(PEC) properties of a $Cu_2O$ thin film/ZnO nanorod array oxide p-n heterojunction structure with ZnO nanorods embedded in $Cu_2O$ thin film as an efficient photoelectrode for solar-driven water splitting. A vertically oriented n-type ZnO nanorod array was first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type $Cu_2O$ thin film was directly electrodeposited onto the vertically oriented ZnO nanorods array to form an oxide semiconductor heterostructure. The crystalline phases and morphologies of the heterojunction materials were characterized using X-ray diffraction and scanning electron microscopy as well as Raman scattering. The PEC properties of the fabricated $Cu_2O/ZnO$ p-n heterojunction photoelectrode were evaluated by photocurrent conversion efficiency measurements under white light illumination. From the observed PEC current density versus voltage (J-V) behavior, the $Cu_2O/ZnO$ photoelectrode was found to exhibit a negligible dark current and high photocurrent density, e.g., $0.77mA/cm^2$ at 0.5 V vs $Hg/HgCl_2$ in a $1mM\;Na_2SO_4$ electrolyte, revealing an effective operation of the oxide heterostructure. In particular, a significant PEC performance was observed even at an applied bias of 0 V vs $Hg/HgCl_2$, which made the device self-powered. The observed PEC performance was attributed to some synergistic effect of the p-n bilayer heterostructure on the formation of a built-in potential, including the light absorption and separation processes of photoinduced charge carriers.