• Title/Summary/Keyword: Zn transport genes

Search Result 3, Processing Time 0.019 seconds

Effects of Dietary Zinc Supplements on the Antioxidant Indicators and the Expression of Zinc Transport Genes in Korean Native Chicks (한국 재래닭에서 아연 보충급여가 항산화 지표 및 아연 운반 유전자 발현에 미치는 영향)

  • Jeon, Dong-Gyung;Kim, Min-Jeong;Yoon, Il-Gyu;Ahn, Ho-Sung;Sohn, Sea-Hwan;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.3
    • /
    • pp.161-171
    • /
    • 2019
  • Four-week-old male Korean native chicks (KNC) were assigned to 3 groups with 6 replicates (8 birds/replicate) in each group: a basal diet (CON, 100 ppm of Zn), basal diet fortified with 50 ppm of Zn with zinc oxide (ZnO), or basal diet fortified with 50 ppm of Zn with Zn-methionine (ZnM). Immediately after a 4-week-feeding trial, 6 birds per group were used to evaluate the effects of zinc supplements on antioxidant indicators and the mRNA expression of zinc transport genes. The nitrogen components, lipid peroxidation, and total antioxidant status in blood were not influenced by Zn fortified diets. However, the ZnM group showed a significant (P<0.05) increase in uric acid levels than those in the ZnO group. In the small intestine, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, and malondialdehyde (MDA) level were unaffected by zinc supplements. The activity of glutathione S-transferase (GST) was significantly (P<0.05) enhanced by Zn-methionine supplementation. In the liver, the activity of GST was significantly (P<0.05) increased by Zn-methionine supplement without affecting SOD, GPX, and MDA levels. With respect to the mRNA expression of zinc transport genes, the ZnM group displayed a strong tendency for increases in intestinal ZnT-1 (P=0.09) and ZnT-5 (P=0.06) levels, compared to those in the CON group. Moreover, the ZnM group showed a tendency (P=0.10) for up-regulation of hepatic metallothionein mRNA as compared with the CON group. In conclusion, the Zn-fortified diet with 50 ppm of Zn-methionine helped to improve GST activity and Zn transport gene expression in the small intestine or liver of KNC.

Overexpression of the Metal Transport Protein1 gene (MTP1) in Arabidopsis Increased tolerance by expression site (금속전달 유전자(MTP1)의 과발현 애기장대에서 발현 위치에 따른 내성 증가 연구)

  • Kim, Donggiun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.327-332
    • /
    • 2019
  • Today's scientists try to remove heavy metals with many new technologies such as phytoremediation. One of the best cutting edge technologies is developing transgenic plants to remove certain heavy metal in soil. I constructed the transformation vector expressing T. goesingense Metal Transport Protein1 gene and TgMTP1: GFP genes. The transgenic plants were selected and confirmed the transformed genes into Arabidopsis thaliana genome. Expression was confirmed in several parts in Arabidopsis cells, tissues and organs. When TgMTP1 overexpressing Arabidopsis thaliana were subjected, transgenic plants showed higher heavy metal tolerance than non-transgenic. For further study I selected the transgenic plant lines with enhanced tolerance against four different heavy metals; Zn, Ni, Co, Cd. The accumulation of these metals in these plants was further analyzed. The TgMTP1 overexpressing Arabidopsis thaliana plant of selected lines are resistant against heavy metals. This plant is characterized by the expression of the MTP1 gene accumulating heavy metal in the vacuole and being simultaneously expressed on the plasma membrane. In conclusion, these plants may be used in plant purification applications, and as a plant with increased tolerance.

Cyanobacterial bioreporters for detection of heavy metals, herbicide, and antibiotics (중금속, 제초제 및 항생제 검출용 남세균 유래 바이오 리포터)

  • Kim, Soo-Youn;Jeong, Won-Joong;Suh, Kye-Hong;Liu, Jang-Ryol;Park, Youn-Il
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.141-145
    • /
    • 2008
  • In this study, glucose-inducible intergenic sequences were used to generate bioreporters of the cyanobacterium Synechocystis sp. PCC 6803 that could monitor environmental pollutants. Luciferase genes LuxAB from the marine bacterium Vibrio fischeri under the control of glucose-inducible intergenic seqeucens of eight genes (atpI, ndbA, ctaD1, tkt, pgi, pdh, ppc, and cydA) were successfully expressed in the cyano-bacterial transformants, showing 5-25 fold increases in biolumeniscence upon exposure to glucose. In addition, glucose-inducible cyanobacterial bioreporters were very sensitive to various chemicals such as heavy metals ($Hg^{2+}$, $Cu^{2+}$, $Zn^{2+}$), electron transport inhibitors (DCMU, DBMIB, $CN^-$), and antibiotics (chloramphenicol and rifampicin). These glucose-inducible cyanobacterial bioreporters would be useful to develop biosensors for rapid screening of environmental samples.