• Title/Summary/Keyword: Zn plating

Search Result 73, Processing Time 0.031 seconds

Excellent Seam Weldable Nano-Composite Coated Zn-Ni Plating Steels for Automotive Fuel Tank

  • Jo, Du-Hwan;Yun, Sang-Man;Park, Kee-Cheol;Kim, Myung-Soo;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.16-23
    • /
    • 2019
  • Steels for automotive fuel tank require unique properties such as corrosion resistance for fuel, welding for joining, forming for press, and painting for exterior. Recently, automakers have been requiring excellent seam weldable steels to enhance manufacturing productivity of fuel tank. Thus, POSCO developed a new type of functional steels coated with nano-composite thin layer on Zn-Ni plating steels. The nano-composite coating solution was prepared by mechanical fine dispersion of solutions consisting of polymeric resin and nano-composite materials in aqueous media. The composite solution was coated on the plating steel surface by using roll coater and cured through induction furnace. These new developed plating steels were evaluated for quality performances such as seam and spot weldability, press formability, and corrosion resistance. These new functional steels coated with nano-composite layer exhibited excellent seam weldability and press formability. Detailed discussion of coating solution and experimental results suggest that nano-sized composite dispersion as coating layer plays a key role in enhancing the quality performance.

Gold Alloy Plating on Electronic Parts(II) (전자 부품상의 금도금에 관한 연구 (제 2 보))

  • 염희택
    • Journal of the Korean institute of surface engineering
    • /
    • v.9 no.3
    • /
    • pp.1-4
    • /
    • 1976
  • In order to get high wear-resistant gold alloy plating on electronic parts, on attempt has been made, in which Cu, Ni, and Zn EDTA salts were added in gold palting solution. The results obtained on the wear resistance are as follows: 1. The addition of 0.5g/ι or over Cu in plating solution, showed 1.5 times more wear resistance than in case of no addition. 2. The addition of 1.5g/ι or over Ni, showed 3.5 times more wear-resistance . 3. The addition of 1.5g/ι and 4.0g/ι Zn , showed 3.5 times and 6.8 times more wear resistance , respectively. 4. The addition of 1.5g/ι Ni and 1.0g/ι Zn simultaneously , showed about 10 times more wear resistance than in case of no addition.

  • PDF

Structural and Magnetic Properties of NixZnyFe3-x-yO4 Films Prepared by Spin-Spray Ferrite Plating Method (스핀 스프레이 페라이트 플레이팅법으로 제작한 NixZnyFe3-x-yO4 박막의 결정학적 및 자기적 특성)

  • Kim, Myung-Ho;Jang, Kyung-Uk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.2
    • /
    • pp.82-86
    • /
    • 2002
  • A series of $Ni_xZn_yFe_{3-x-y}O_4$ films were prepared by spin-spray ferrite plating on glass substrates from aqueous solution at $90[^{\circ}C]$. The magnetic properties in terms of contents of Ni and Zn in the plated films are presented. All the films are polycrystalline with spinel structure. At x+y=0.58, the film presents preferential orientation. As composition of y in the films increases grain size and void in the films increases, while saturation magnetization and coercive force of the films decrease.

A Study on the Recovery of Zinc ion from Metal-Plating Wastewater by Using Spent Catalyst (酸化鐵 廢觸媒에 의한 도금폐수중 아연이온 回收에 관한 基礎硏究)

  • 이효숙;오영순;이우철
    • Resources Recycling
    • /
    • v.10 no.3
    • /
    • pp.23-28
    • /
    • 2001
  • Zinc ion could be recovered from metal plating wastewater with the spent iron oxide catalyst which was used in the plant of Styrene Monomer(SM) production. The zinc was recovered more than 98.7% at higher than pH 2.0. The saturation magnetization of the spent catalyst is enough high as 59.4 emu/g to apply in the solid-liquid separation after treating the wastewater. The mechanism of zinc recovery with the iron oxide catalyst could be a electro-chemical adsorption at pH 3.0~8.5, and a precipitation as $Zn(OH)_2$ at higher than pH 8.5.

  • PDF

Microwave Absorbing Properties of Silver-coated Ni-Zn Ferrite Spheres Prepared by Electroless Plating (무전해 도금법에 의해 제조된 은 피복 Ni-Zn Ferrite Sphere의 전파흡수특성)

  • Kim, Jong-Hyuk;Kim, Jae-Woong;Kim, Sung-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.3
    • /
    • pp.202-206
    • /
    • 2005
  • The present investigation provides an electromagnetic radiation absorptive composition which comprises silver-coated ferrite microspheres dispersed in silicon rubber matrix for the aim of thin microwave absorber in GHz frequencies. Ni-Zn ferrite spheres with $50{\mu}m$ size in average were prepared by spray-drying and sintering at $1130^{\circ}C$. Conductive silver layer was plated on ferrite spheres by electroless plating. Conductive Ni-Zn ferrite sphere with uniform silver layer were obtained in the concentration of 10 g/L $AgNO_3$ per 20 g ferrite spheres. For this powder, electrical resistance is reduced as low as $10^{-2}\~10^{-3}\;\Omega$. The most sensitive material parameters with silver plating is real and imaginary parts of complex permittivity. The conductive Ni-Zn ferrite spheres have large values of dielectric constant. Due to this high dielectric constant of microspheres, matching thickness is reduced to as low as 2 mm at the frequency of 7 GHz, which is much thinner than conventional ferrite absorbers.

The Investigation of Microstructure of Electro-deposited Layer for the Corrosion Resistance on Sheet Steel (강판의 부식방지를 위한 도금층 조직관찰)

  • 김인수;이세광
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.224-227
    • /
    • 1997
  • In Ni and Zn plating, microstructure and corrosion behavior of electrodeposits with various electroplating condition were investigated. Optical microstructure, SEM images and polarization curves of electrodeposits are different with plating time and temperature.

  • PDF

Zn-Cr Alloy Plating from Acidic Chloride Bath: Effect of Temperature and Current Densities on Composition of Electrodeposits (산성염화욕에서의 Zn-Cr합금도금 : 합금화에 미치는 전류밀도와 온도의 영향)

  • Kang, Soo Young
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.285-290
    • /
    • 2018
  • The steel has been used in modern industry, car maker and electric appliance. The steel have some problem, specially corrosion problem. To solve corrosion problem, Zn electrodeposit on steel have been adapted. Recently, The modern industry asks to increase corrosion resistance. Naturally, Increasing corrosion resistance increases the thickness of Zn electrodeposit. But increasing thickness of Zn electrodeposit has some problems. In making part, There are some crack. This crack cause to decrease corrosion resistance. To solve this problem, it is interested in Zn Based alloy electrodeposit such as Zn-Cr. Here, the influence of the electrolytic conditions on the composition of the alloy plating in the chloride bath was investigated. The results are explained by the cathode overvoltage curve of Cr and Zn. As the current density of the cathode increases, Zn content of electrodeposit decrease and Cr content of electrodeposit increase. As the temperature of the electrolyte increases, Zn content of electrodeposit decrease and Cr content of electrodeposit increase.

Effects of pH and Plating Bath Temperature on Formation of Eco-Friendly Electroless Ni-P Plating Film on Aluminum (알루미늄 위 친환경적 무전해 Ni-P 도금막 형성에 pH와 도금조 온도가 미치는 영향)

  • Gee, Hyun-Bae;Bin, Jung-Su;Lee, Youn-Seoung;Rha, Sa-Kyun
    • Korean Journal of Materials Research
    • /
    • v.32 no.9
    • /
    • pp.361-368
    • /
    • 2022
  • The overall process, from the pre-treatment of aluminum substrates to the eco-friendly neutral electroless Ni-P plating process, was observed, compared, and analysed. To remove the surface oxide layer on the aluminum substrate and aid Ni-P plating, a zincation process was carried out. After the second zincation treatment, it was confirmed that a mostly uniform Zn layer was formed and the surface oxide of aluminum was also removed. The Ni-P electroless plating films were formed on the secondary zincated aluminum substrate using electroless plating solutions of pH 4.5 and neutral pH 7.0, respectively, while changing the plating bath temperature. When a neutral pH7.0 electroless solution was used, the Ni-P plating layer was uniformly formed even at the plating bath temperature of 50 ℃, and the plating speed was remarkably increased as the bath temperature was increased. On the other hand, when a pH 4.5 Ni-P electroless solution was used, a Ni-P plating film was not formed at a plating bath temperature of 50 ℃, and the plating speed was very slow compared to pH 7.0, although plating speed increased with increasing bath temperature. In the P contents, the P concentration of the neutral pH 7.0 Ni-P electroless plating layer was reduced by ~ 42.3 % compared to pH 4.5. Structurally, all of the Ni-P electroless plating layers formed in the pH 4.5 solution and the neutral (pH 7.0) solution had an amorphous crystal structure, as a Ni-P compound, regardless of the plating bath temperature.

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.