• 제목/요약/키워드: Zn oxide nanofibers

검색결과 13건 처리시간 0.038초

Semiconducting ZnO Nanofibers as Gas Sensors and Gas Response Improvement by $SnO_2$ Coating

  • Moon, Jae-Hyun;Park, Jin-Ah;Lee, Su-Jae;Zyung, Tae-Hyoung
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.636-641
    • /
    • 2009
  • ZnO nanofibers were electro-spun from a solution containing poly 4-vinyl phenol and Zn acetate dihydrate. The calcination process of the ZnO/PVP composite nanofibers brought forth a random network of polycrystalline wurtzite ZnO nanofibers of 30 nm to 70 nm in diameter. The electrical properties of the ZnO nanofibers were governed by the grain boundaries. To investigate possible applications of the ZnO nanofibers, their CO and $NO_2$ gas sensing responses are demonstrated. In particular, the $SnO_2$-deposited ZnO nanofibers exhibit a remarkable gas sensing response to $NO_2$ gas as low as 400 ppb. Oxide nanofibers emerge as a new proposition for oxide-based gas sensors.

Fabrication and Thermal Oxidation of ZnO Nanofibers Prepared via Electrospinning Technique

  • Baek, Jeong-Ha;Park, Ju-Yun;Kang, Ji-Soo;Kim, Don;Koh, Sung-Wi;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2694-2698
    • /
    • 2012
  • Materials on the scale of nanoscale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nanofibers using the electrospinning method for potential uses of solar cells and sensors. After ZnO nanofibers were obtained, calcination temperature effects on the ZnO nanofibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nanofibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nanofibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nanofibers. These techniques have helped us deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nanofibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised.

전기방사법에 의해 합성된 무방향성 산화아연 나노섬유의 일산화질소 가스 감지 특성 (Electrospun Non-Directional Zinc Oxide Nanofibers as Nitrogen Monoxide Gas Sensor)

  • 김옥길;김효진;김도진
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.609-614
    • /
    • 2012
  • We report on the NO gas sensing properties of non-directional ZnO nanofibers synthesized using a typical electrospinning technique. These non-directional ZnO nanofibers were electrospun on an $SiO_2$/Si substrate from a solution containing poly vinyl alcohol (PVA) and zinc nitrate hexahydrate dissolved in distilled water. Calcination processing of the ZnO/PVA composite nanofibers resulted in a random network of polycrystalline ZnO nanofibers of 50 nm to 100 nm in diameter. The diameter of the nanofibers was found to depend primarily on the solution viscosity; a proper viscosity was maintained by adding PVA to fabricate uniform ZnO nanofibers. Microstructural measurements using scanning electron microscopy revealed that our synthesized ZnO nanofibers after calcination had coarser surface morphology than those before calcination, indicating that the calcination processing was sufficient to remove organic contents. From the gas sensing response measurements for various NO gas concentrations in dry air at several working temperatures, it was found that gas sensors based on electrospun ZnO nanofibers showed quite good responses, exhibiting a maximum sensitivity to NO gas in dry air at an operating temperature of $200^{\circ}C$. In particular, the non-directional electrospun ZnO nanofiber gas sensors were found to have a good NO gas detection limit of sub-ppm levels in dry air. These results illustrate that non-directional electrospun ZnO nanofibers are promising for use in low-cost, high-performance practical NO gas sensors.

전기방사로 합성된 산화물 나노섬유의 조성 및 결정화도에 따른 (Ga1-xZnx)(N1-xOx) 나노섬유의 형상 제어 연구 (A Study on Morphology Control of (Ga1-xZnx)(N1-xOx) Nanofibers according to the Composition and Crystallinity of Oxide Nanofibers Synthesized by Electrospinning)

  • 김정현;오승탁;이영인
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.259-266
    • /
    • 2021
  • The (Ga1-xZnx)(N1-xOx) solid solution is attracting extensive attention for photocatalytic water splitting and wastewater treatment owing to its narrow and controllable band gap. To optimize the photocatalytic performance of the solid solution, the key points are to decrease its band gap and recombination rate. In this study, (Ga1-xZnx)(N1-xOx) nanofibers with various Zn fractions are prepared by electrospinning followed by calcination and nitridation. The effect of the composition and crystallinity of electrospun oxide nanofibers on the morphology and optical properties of the obtained solid-solution nanofibers are systematically investigated. The results show that the final shape of the (Ga1-xZnx) (N1-xOx) material is greatly affected by the crystallinity of the oxide nanofibers before nitridation. The photocatalytic properties of (Ga1-xZnx)(N1-xOx) with different Ga:Zn atomic ratios are investigated by studying the degradation of rhodamine B under visible light irradiation.

Application of Oxide Nanofibers Synthesized by Electrospinning to Chemical Sensors

  • Choi, Sun-Woo;Akash, Katoch;Jung, Sung-Hyun;Kim, Sang-Sub
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • Nanofibers, one of various one-dimensional nanomaterials such as nanorods, nanowires and nanotubes have been successfully synthesized by many groups in recent years and their applications to chemical sensors, catalytic filters and biomedicine, etc. are extensively tested. In particular, there is a possibility that chemical sensors based on oxide nanofibers can overcome the shortcomings of chemical sensors based on single nanowires. In order to prepare oxide nanofibers, the electrospinning method is most widely used. In this work, we synthesized various oxide nanofibers including ZnO, SnO2 and CuO by employing an electrospinning method and various shapes of nanofibers including core-shell nanofibers and hollow nanofibers as well. The response properties of the various nanofibers to oxidizing and reducing gaseous species have been investigated systematically. The normal oxide nanofibers showed high sensitivity and quite fast response time to many gaseous species. Furthermore, derivatives of normal nanofibers including hollow nanofibers, core-shell nanofibers and heterostructured nanofibers display much superior sensing properties. These results hold promise for the practical application of oxide nanofibers to chemical sensors. In addition, the sensing mechanisms operated in the nanofibers will be discussed in detail.

  • PDF

전기방사방법에 의해 합성된 ZnO 중공 나노섬유의 trimethylamine 가스 감응 특성 (Trimethylamine Sensing Characteristics of Molybdenum doped ZnO Hollow Nanofibers Prepared by Electrospinning)

  • 김보영;윤지욱;이철순;박준식;이종흔
    • 센서학회지
    • /
    • 제24권6호
    • /
    • pp.419-422
    • /
    • 2015
  • Pure and Mo-doped ZnO hollow nanofibers were prepared by single capillary electrospinning and their gas sensing characteristics toward 5 ppm ethanol, trimethylamine (TMA), CO and $H_2$ were investigated. The gas responses and responding kinetics were dependent upon sensing temperature and Mo doping. Mo-doped ZnO hollow nanofibers showed high response to 5 ppm TMA ($R_a/R_g=111.7$, $R_a$: resistance in air, $R_g$: resistance in gas) at $400^{\circ}C$, while the responses of pure ZnO hollow nanofibers was low ($R_a/R_g=47.1$). In addition, the doping of Mo enhanced selectivity toward TMA. The enhancement of gas response and selectivity to TMA by Mo doping to ZnO nanofibers was discussed in relation to the interaction between basic analyte gas and acidic additive materials.

전기방사를 이용한 반도체 산화물(ZnO) 나노웹 제조에 관한 연구 (Studies on semiconducting metal-oxide(ZnO) Nanoweb from Electrospinning)

  • 조나경;김한성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.253-253
    • /
    • 2009
  • Electrospinning is one of the simple, cost- efficient methods to produce long continuous semiconducting oxide nanofibers. Polyvinyl Alcohol (PVA) and zinc acetate were used. PVA/Zinc acetate aqueous solutions were electrospun into nonwoven webs. CCD camera, with a lens of long working distance and digital video board were used in capturing the drop and web deposition. The diameter and morphology of nanofibers were analyzed with a Field-emission scanning electron microscopy (FE-SEM). In this study, the average diameter and morphology of nanofibers have been explorered.

  • PDF

산화아연(Zinc oxide) 나노입자와 은나노 와이어(Silver nanowire)를 함유한 Poly(vinylidene fluoride) 복합나노섬유 제조 및 동작 센서로의 적용 가능성 탐색 (Fabrication of Poly(Vinylidene Fluoride) Nanocomposite Fibers Containing Zinc Oxide Nanoparticles and Silver Nanowires and their Application in Textile Sensors for Motion Detection and Monitoring)

  • 양혁주;이승신
    • 한국의류학회지
    • /
    • 제47권3호
    • /
    • pp.577-592
    • /
    • 2023
  • In this study, nanofiber-based textile sensors were developed for motion detection and monitoring. Poly(vinylidene fluoride) (PVDF) nanofibers containing zinc oxide (ZnO) nanoparticles and silver nanowires (AgNW) were fabricated using electrospinning. PVDF was chosen as a piezoelectric polymer, zinc oxide as a piezoelectric ceramic, and AgNW as a metal to improve electric conductivity. The PVDF/ZnO/AgNW nanocomposite fibers were used to develop a textile sensor, which was then incorporated into an elbow band to develop a wearable smart band. Changes in the output voltage and peak-to-peak voltage (Vp-p) generated by the joint's flexion and extension were investigated using a dummy elbow. The β-phase crystallinity of pure PVDF nanofibers was 58% when analyzed using Fourier transform infrared spectroscopy; however, the β-phase crystallinity increased to 70% in PVDF nanofibers containing ZnO and to 78% in PVDF nanocomposite fibers containing both ZnO and AgNW. The textile sensor's output voltage values varied with joint-bending angle; upon increasing the joint angle from 45° to 90° to 150°, the Vp-p value increased from 0.321 Vp-p to 0.542 Vp-p to 0.660 Vp-p respectively. This suggests that the textile sensor can be used to detect and monitor body movements.

전기방사로 제작된 산화물 나노사 열전 pn 커플의 제작 및 특성 (Fabrication and Characterization of a Thermoelectric pn Couple Made of Electrospun Oxide Nanofibers)

  • 이동훈;조경아;최진용;김상식
    • 한국전기전자재료학회논문지
    • /
    • 제28권4호
    • /
    • pp.252-256
    • /
    • 2015
  • In this study, we propose a novel fabrication of an oxide-based lateral thermoelectric pn couple and investigate the characteristics of the thermoelectric couple. Electrospun ZnO and $LaSrCoO_3$ nanofibers are used as n- and p-legs of the couple, respectively. The Seebeck coefficients of the n- and p-type nanofibers and the pn couple are $-98.1{\mu}V/K$, $42.4{\mu}V/K$, and $118.8{\mu}V/K$, respectively. The thermoelectric couple generates an output voltage of $484.7{\mu}V$ at a temperature difference of 4.1 K.

전기방사를 이용한 Al이 첨가된 ZnO 나노섬유의 제조 및 광학 특성평가 (Optical properties of Al doped ZnO Nanofibers Prepared by electrospinning)

  • 송찬근;윤종원
    • 한국결정성장학회지
    • /
    • 제21권5호
    • /
    • pp.205-209
    • /
    • 2011
  • ZnO는 반도전성과 초전도성을 나타내며 광학적으로도 독특한 재료로 가스센서, 태양전지, 광학도파관 등 여러 방면에 널리 활용되고 있다. 본 논문에서는 이러한 ZnO에 Al을 첨가함에 따라 광학적 특성에 어떠한 영향을 미치는지 알아보기 위하여 ZnO에 Al 첨가량 변화에 따른 나노구조체를 제작하여 특성을 비교하였다. ZnO 용액은 PVP, ethanol, zinc acetate를 이용하여 Sol의 형태로 제작하였으며, Al첨가용액을 넣어 Al이 첨가된 ZnO Sol을 제작하였다. 제작된 Sol을 전기 방사법을 이용하여 나노구조체를 제조하였다. 제조된 섬유들을 각각 300, 500, $700^{\circ}C$로 열처리 한 후 나노 구조체를 XRD, XPS, SEM을 이용하여 분석하였다. 또한 TGA, DSC를 이용하여 온도변화에 따른 질량 및 열량의 변화를 측정하였다. UVvis를 이용하여 ZnO와 Al이 첨가된 ZnO의 흡광도를 측정 비교하였다.