DOI QR코드

DOI QR Code

Fabrication and Thermal Oxidation of ZnO Nanofibers Prepared via Electrospinning Technique

  • Baek, Jeong-Ha (Department of Chemistry, Pukyong National University) ;
  • Park, Ju-Yun (Department of Chemistry, Pukyong National University) ;
  • Kang, Ji-Soo (Department of Chemistry and Biochemistry, University of California at Los Angeles) ;
  • Kim, Don (Department of Chemistry, Pukyong National University) ;
  • Koh, Sung-Wi (Department of Mechanical System Engineering, Pukyong National University) ;
  • Kang, Yong-Cheol (Department of Chemistry, Pukyong National University)
  • Received : 2012.04.17
  • Accepted : 2012.05.18
  • Published : 2012.08.20

Abstract

Materials on the scale of nanoscale have widely been used as research topics because of their interesting characteristics and aspects they bring into the field. Out of the many metal oxides, zinc oxide (ZnO) was chosen to be fabricated as nanofibers using the electrospinning method for potential uses of solar cells and sensors. After ZnO nanofibers were obtained, calcination temperature effects on the ZnO nanofibers were studied and reported here. The results of scanning electron microscopy (SEM) revealed that the aggregation of the ZnO nanofibers progressed by calcination. X-ray diffraction (XRD) study showed the hcp ZnO structure was enhanced by calcination at 873 and 1173 K. Transmission electron microscopy (TEM) confirmed the crystallinity of the calcined ZnO nanofibers. X-ray photoelectron spectroscopy (XPS) verified the thermal oxidation of Zn species by calcination in the nanofibers. These techniques have helped us deduce the facts that the diameter of ZnO increases as the calcination temperature was raised; the process of calcination affects the crystallinity of ZnO nanofibers, and the thermal oxidation of Zn species was observed as the calcination temperature was raised.

Keywords

References

  1. Liu, L.; Li, S.; Zhuang, J.; Wang, L.; Zhang, J.; Li, H.; Li, Z.; Han, Y.; Jiang, X.; Zhang, P. Sen. Act. B 2011, 155, 782. https://doi.org/10.1016/j.snb.2011.01.047
  2. Yiquan, W.; Zexuan, D.; Nathan, J. J.; Robert, L. C. Mater. Lett. 2011, 65, 2683. https://doi.org/10.1016/j.matlet.2011.05.086
  3. Yang, M.; Xie, T.; Peng, L.; Zhao, Y.; Wang, D. Appl. Phys. A 2007, 89, 427. https://doi.org/10.1007/s00339-007-4204-5
  4. Song, J. H.; Wang, X. D.; Liu, J.; Liu, H. B.; Li, Y. L.; Wang, Z. L. Nano Lett. 2008, 8, 203. https://doi.org/10.1021/nl072440v
  5. Park, D.; Tak, Y.; Kim, J.; Yong, K. Surf. Rev. Lett. 2007, 14, 1061. https://doi.org/10.1142/S0218625X07010639
  6. Sun, Z. P.; Liu, L.; Zhang, D. Z. Nanotechnology 2006, 17, 2266. https://doi.org/10.1088/0957-4484/17/9/032
  7. Bagci, V. M K.; Gulseren, O.; Yildirim, T.; Gedik, Z.; Ciraci, S. Phys. Rev. B 2002, 66, 045409. https://doi.org/10.1103/PhysRevB.66.045409
  8. Liao, L.; Lu, H. B.; Li, J. C.; Liu, C.; Fu, D. J.; Liu, Y. L. Appl. Phys. Lett. 2007, 91, 173110. https://doi.org/10.1063/1.2800812
  9. Xu, W. Z.; Ye, Z. Z.; Ma, D. W.; Lu, H. M.; Zhu, L. P.; Zhao, B. H.; Yang, X. D.; Xu, Z. Y. Appl. Phys. Lett. 2005, 87, 093110. https://doi.org/10.1063/1.2035868
  10. Qi, Q.; Zhang,, T.; Wang, S.; Zheng, X. Sens. Act. B Chem. 2009, 137, 649. https://doi.org/10.1016/j.snb.2009.01.042
  11. Spinolo, G.; Ardizzone, S.; Trasatti, S. J. Electroanal. Chem. 1997, 423, 49. https://doi.org/10.1016/S0022-0728(96)04841-3
  12. Jung, B. O.; Kim, D. C.; Kong, B. H.; Lee, J. H.; Lee, J. Y.; Cho, H. K. Eletrochem. Sol. St. Lett. 2011, 14, H446. https://doi.org/10.1149/2.005111esl
  13. Noguchi, S.; Mizuhashi, M. Thin Solid Films 1981, 77, 99. https://doi.org/10.1016/0040-6090(81)90364-3
  14. Liu, Y.; Mi, C.; Su, L.; Zhang, X. Electrochim. Acta 2008, 53, 2507. https://doi.org/10.1016/j.electacta.2007.10.020
  15. Dan, L.; Younan, X. Adv. Mater. 2004, 16, 1151. https://doi.org/10.1002/adma.200400719
  16. Ramaseshan, R.; Sundarrajan, S.; Jose, R.; Ramakrishna, S. J. Appl. Phys. 2007, 102, 111101. https://doi.org/10.1063/1.2815499
  17. Hu, C. C.; Cheng, C. Y. Electrochem. Solid-State Lett. 2002, 5, A43. https://doi.org/10.1149/1.1448184
  18. Ding, B.; Ogawa, G.; Kim, J.; Fujimoto, K.; Shiratori, S. Thin Solid Films 2008, 516, 2495. https://doi.org/10.1016/j.tsf.2007.04.086
  19. Park, J. A.; Moon, J.; Lee, S. J.; Lim, S. C.; Zyung, T. Curr. Appl. Phys. 2009, 9, S210. https://doi.org/10.1016/j.cap.2009.01.044
  20. Venugopal, J.; Ramakrishina, S. Appl. Biochem. Biotech. 2005, 125, 147. https://doi.org/10.1385/ABAB:125:3:147
  21. Wu, Y.; Dong, Z.; Jenness, N. J.; Clark, R. L. Mater. Lett. 2011, 65, 2683. https://doi.org/10.1016/j.matlet.2011.05.086
  22. Sangkhaprom, N.; Supaphol, P.; Pavarajarn, V. Ceram. Intern. 2010, 36, 357. https://doi.org/10.1016/j.ceramint.2009.09.014
  23. Jo, J. M.; Park, J.; Kim, D.; Koh, S. W.; Kang, Y. C. Bull. Korean Chem. Soc. 2010, 31, 1776. https://doi.org/10.5012/bkcs.2010.31.6.1776
  24. JCPDS Database, International Center for Diffraction Data 1997, PDF 80-0075.
  25. Klong, H. P.; Alexander, L. E. X-ray Diffraction Procedures for Crystalline and Amorphous Materials; Wiley: New York, 1954; pp 491-538.
  26. Wang, Y.; Zhong, Z.; Chen, Y.; Ng, C. T.; Lin, J. Nano Res. 2011, 4, 695. https://doi.org/10.1007/s12274-011-0125-x
  27. Espitia-Cabrera, I.; Orozco-Hernandez, H. D.; Bartolo-Perez, P.; Contreras-Garcia, M. E. Surf. Coat. Technol. 2008, 203, 211. https://doi.org/10.1016/j.surfcoat.2008.08.051
  28. Wagner, C. D.; Riggs, W. M.; Davis, L. E.; Moulder, J. F.; Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: USA. 1979.
  29. Islam, M. N.; Ghosh, T. B.; Chopra, K. L.; Acharya, H. N. Thin Solid Films 1996, 280, 20. https://doi.org/10.1016/0040-6090(95)08239-5
  30. Sepulveda Guzman, S.; Reeja-Jayan, B.; Rosa, E.; Torres-Castro, A.; Gonzalez Gonzalez, V.; Jose-Yacaman, M. Mater. Chem. Phys. 2009, 115, 172. https://doi.org/10.1016/j.matchemphys.2008.11.030
  31. Shiva, H.; Nilima, H.; David, L.; Bruce, C. Nanoscale Res. Lett. 2009, 4, 1421. https://doi.org/10.1007/s11671-009-9414-7
  32. Guo, C. F.; Wang, Y.; Liu, Q. J. Nanosci. Nanotechno. 2010, 10, 1. https://doi.org/10.1166/jnn.2010.1484

Cited by

  1. Facile Synthesis of Self-Assembled Flower-Like Mesoporous Zinc Oxide Nanoflakes for Energy Applications vol.17, pp.01n02, 2018, https://doi.org/10.1142/S0219581X1760002X
  2. Fabrication and Characterization of Zinc Oxide-Based Electrospun Nanofibers for Mechanical Energy Harvesting vol.5, pp.1, 2014, https://doi.org/10.1115/1.4027447
  3. Surface characterization and investigation on antibacterial activity of CuZn nanofibers prepared by electrospinning vol.508, pp.None, 2012, https://doi.org/10.1016/j.apsusc.2019.144883
  4. Tailoring the Surface Characteristics of CuSe Thin Films by Adjusting the Compositional Ratio vol.218, pp.15, 2012, https://doi.org/10.1002/pssa.202100148
  5. A comprehensive review on preparation, functionalization and recent applications of nanofiber membranes in wastewater treatment vol.301, pp.None, 2022, https://doi.org/10.1016/j.jenvman.2021.113908