• 제목/요약/키워드: Zn ion

검색결과 677건 처리시간 0.027초

차세대 이차전지용 아연 이온 이차전지 소재 연구 개발 동향 (Recent Research Trend of Zinc-ion Secondary Battery Materials for Next Generation Batterie)

  • 조정근;김재국
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.312-330
    • /
    • 2018
  • Energy storage/conversion has become crucial not only to meet the present energy demand but also more importantly to sustain the modern society. Particularly, electrical energy storage is critical not only to support electronic, vehicular and load-levelling applications but also to efficiently commercialize renewable energy resources such as solar and wind. While Li-ion batteries are being intensely researched for electric vehicle applications, there is a pressing need to seek for new battery chemistries aimed at stationary storage systems. In this aspect, Zn-ion batteries offer a viable option to be utilized for high energy and power density applications since every intercalated Zn-ion yields a concurrent charge transfer of two electrons and thereby high theoretical capacities can be realized. Furthermore, the simplicity of fabrication under open-air conditions combined with the abundant and less toxic zinc element makes aqueous Zn-ion batteries one of the most economical, safe and green energy storage technologies with prospective use for stationary grid storage applications. Also, Zn-ion batteries are very safe for next-generation technologies based on flexible, roll-up, wearable implantable devices the portable electronics market. Following this advantages, a wide range of approaches and materials, namely, cathodes, anodes and electrolytes have been investigated for Zn-ion batteries applications to date. Herein, we review the progresses and major advancements related to aqueous. Zn-ion batteries, facilitating energy storage/conversion via $Zn^{2+}$ (de)intercalation mechanism.

Nanofiller as Crosslinker for Halogen-Containing Elastomers

  • Sahoo, N.G.;Kumar, E.Shiva;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.506-510
    • /
    • 2003
  • A Zn ion-coated nanosilica filler has been developed and tested, in chlorosulfonated polyethylene (CSPE) and polychloroprene (CR), as a vulcanizing activator, cum was reinforcing filler. In this study, ZnO was replaced by the Zn ion-coated nanosilica filler with an aim of studying the dual role of this nanofiller in CSPE and CR. In the case of CSPE vulcanizates, the presence of MgO deteriorated the state and rate of cure when the Zn ion-coated nanosilica filler was used, but in the case of CR it improved the state of cure and enhanced the modulus and tensile strength. The Zn ion-coated filler proved to be a better reinforcing-cum-curing agent than was externally added ZnO and NA-22 also proved to be a better curative in the presence of the Zn ion-coated nanosilica filler for both CSPE and CR.

배향막 응용을 위한 이온 빔 조사된 ZnO 박막에 관한 연구 (Study on ZnO Thin Film Irradiated by Ion Beam as an Alignment Layer)

  • 강동훈;김병용;김종연;김영환;김종환;한정민;옥철호;이상극;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.430-430
    • /
    • 2007
  • In this study, the nematic liquid crystal (NLC) alignment effects treated on the ZnO thin film layers using ion beam irradiation were successfully studied for the first time. The ZnO thin films were deposited on indium-tin-oxide (ITO) coated glass substrates by rf-sputter and The ZnO thin films were deposited at the three kinds of rf power. The used DuoPIGatron type ion beam system, which can be advantageous in a large area with high density plasma generation. The ion beam parameters were as follows: energy of 1800 eV, exposure time of 1 min and ion beam current of $4\;mA/cm^2$ at exposure angles of $15^{\circ}$, $30^{\circ}$, $45^{\circ}$, and $60^{\circ}$. The homogeneous and homeotropic LC aligning capabilities treated on the ZnO thin film surface with ion beam exposure of $45^{\circ}$ for 1 min can be achieved. The low pretilt angle for a NLC treated on the ZnO thin film surface with ion beam irradiation for all incident angles was measured. The good LC alignment treated on the ZnO thin film with ion beam exposure at rf power of 150 W can be measure. For identifying surfaces topography of the ZnO thin films, atomic force microscopy (AFM) was introduced. After ion beam irradiation, test samples were fabricated in an anti-parallel configuration with a cell gap of $60{\mu}m$.

  • PDF

Zn-Ion Coated Structural $SiO_2$ Filled LDPE: Effects of Epoxy Resin Encapsulation

  • Reddy C. S.;Das C. K.;Agarwal K.;Mathur G N.
    • Macromolecular Research
    • /
    • 제13권3호
    • /
    • pp.223-228
    • /
    • 2005
  • In the present work, a low-density polyethylene (LDPE) composite, filled with Zn-ion coated structural silica encapsulated with the diglycidyl ether of bisphenol-A (DGEBA), was synthesized using the conventional melt-blending technique in a sigma internal mixer. The catalytic activity of the Zn-ions (originating from the structural silica) towards the oxirane group (diglycidyl ether of bisphenol-A (DGEBA): encapsulating agent) was assessed by infrared spectroscopy. Two composites, each with a filler content of $2.5 wt\%$ were developed. The first one was obtained by melt blending the Zn-ion coated structural silica with LDPE in a co-rotating sigma internal mixer. The second one was obtained by melt blending the same LDPE, but with DGEBA encapsulated Zn-ion coated structural silica. Epoxy resin encapsulation of the Zn-ion coated structural silica resulted in its having good interfacial adhesion and a homogeneous dispersion in the polymer matrix. Furthermore, the encapsulation of epoxy resin over the Zn-ion coated structural silica showed improvements in both the mechanical and thermal properties, viz. a $33\%$ increase in the elastic modulus and a rise in the onset degradation temperature from 355 to $371^{\circ}C$, in comparison to the Zn-ion coated structural silica.

Zn2GeO4와 Zn2SnO4 나노선의 리튬 및 소듐 이온전지 성능 비교 연구 (Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries)

  • 임영록;임수아;박정희;조원일;임상후;차은희
    • 전기화학회지
    • /
    • 제18권4호
    • /
    • pp.161-171
    • /
    • 2015
  • 수열합성법을 이용하여 $Zn_2GeO_4$$Zn_2SnO_4$ 나노선을 대량 합성하였고 리튬이온 전지와 소듐이온전지의 전기화학적 특성을 조사하였다. 리튬이온전지에서 $Zn_2GeO_4$ 나노선은 50 사이클 이후에 1021 mAh/g, $Zn_2SnO_4$ 나노선은 692 mAh/g의 높은 방전용량을 갖는 것을 확인하였고 두 나노선 모두 98%가 넘는 쿨롱 효율을 보였다. 따라서 이들 나노선은 고성능 리튬이온전지의 개발을 위한 음극소재로 기대된다. 또한 소듐이온전지에 대한 관심이 국내는 물론 전 세계적으로 집중이 되고 있어 처음으로 $Zn_2GeO_4$$Zn_2SnO_4$ 나노선에 대한 소듐이온전지를 제작하여 용량을 측정하였다. 측정한 결과 이들 나노선은 50 사이클 이후에 각각 168 mAh/g 과 200 mAh/g의 방전용량을 갖는 것을 확인하였고 두 나노선 모두 97%가 넘는 높은 쿨롱 효율을 보였으며 이에 우리의 첫 시도가 앞으로 많은 연구에 기여할 것으로 예상한다.

Speciation of Cd, Cu and Zn in Sewage Sludge-Treated Soils Incubated under Aerobic and Anaerobic Conditions

  • Lee, Sang-Mo;Cho, Chae-Moo;Yoo, Sun-Ho
    • Journal of Applied Biological Chemistry
    • /
    • 제42권2호
    • /
    • pp.85-91
    • /
    • 1999
  • The incubation study was conducted under aerobic and anaerobic conditions to study the release of the kinetically labile forms (i. e. chelating ion or anion forms) of Cd, Cu and Zn in sludge-untreated soil ("Control"), sludge 50 and $100dry\;Mg\;ha^{-1}$ treated soils ("Soil-Sludge mixtures"), and sewage sludge ("Sludge"). The chelating ion and anion exchange membranes were embedded into the samples and incubated for 16 weeks under aerobic and anaerobic condition. The total amounts of chelating ion or anionic forms of Cd were too little to be measured during both aerobic and anaerobic incubation. On the other hand, the total amounts of chelating ion or anionic forms of Cu and Zn slightly increased throughout the incubation period under both incubation conditions. For "Control" and "Soil-Sludge mixtures" treatments, the total amounts of Cu and Zn in chelating ion and anion exchange membrane were little difference between aerobic and anaerobic condition, and the total amounts of chelating ion form of Cu and Zn were not different from the those of anionic form of Cu and Zn. However, for "Sludge" treatment, the total amounts of Cu and Zn in anion and chelating ion exchange membrane were greater under aerobic condition than under anaerobic condition, and the total amounts of chelating ion form of Cu and Zn were greater than those of anion form of Cu and Zn under both incubation conditions.

  • PDF

Nanofiller as Vulcanizing Aid for Styrene-Butadiene Elastomer

  • Sahoo, N.G.;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.369-372
    • /
    • 2002
  • The use of ZnO and stearic acid is very well known in sulfenamide accelerated sulfur vulcanization of diene elastomers. Zn-ion coated nano filler has been developed and tested, in styrene-butadiene rubber (SBR) as sulfur vulcanizing activator cum reinforcing filler. In this study Zinc oxide has been replaced by the Zn-ion coated nano silica filler with an aim to study the dual role of this nanofiller in SBR. The presence of Zn-ion on the nano silica filler surface activates the sulfur vulcanization by involving Zn++ in to the sulfurating complex formed with thiazole from sulfenamide. The increase of Zn-ion, on the nanofiller, decrease the scorch safety of the elastomer compound but increase the tensile strength, state of cure and tear strength and attain maximum at its 10% level. The presence of stearic acid increases the rate of vulcanization. Replacement of stearic acid with mono-stearate, however, increases the vulcanization rate but decrease the ultimate state of cure. A mechanistic scheme involving dual function of this nanofiller has been suggested.

이온 주입법을 이용한 ZnO 박막의 As 도핑 (Arsenic Doping of ZnO Thin Films by Ion Implantation)

  • 최진석;안성진
    • 한국재료학회지
    • /
    • 제26권6호
    • /
    • pp.347-352
    • /
    • 2016
  • ZnO with wurtzite structure has a wide band gap of 3.37 eV. Because ZnO has a direct band gap and a large exciton binding energy, it has higher optical efficiency and thermal stability than the GaN material of blue light emitting devices. To fabricate ZnO devices with optical and thermal advantages, n-type and p-type doping are needed. Many research groups have devoted themselves to fabricating stable p-type ZnO. In this study, $As^+$ ion was implanted using an ion implanter to fabricate p-type ZnO. After the ion implant, rapid thermal annealing (RTA) was conducted to activate the arsenic dopants. First, the structural and optical properties of the ZnO thin films were investigated for as-grown, as-implanted, and annealed ZnO using FE-SEM, XRD, and PL, respectively. Then, the structural, optical, and electrical properties of the ZnO thin films, depending on the As ion dose variation and the RTA temperatures, were analyzed using the same methods. In our experiment, p-type ZnO thin films with a hole concentration of $1.263{\times}10^{18}cm^{-3}$ were obtained when the dose of $5{\times}10^{14}$ As $ions/cm^2$ was implanted and the RTA was conducted at $850^{\circ}C$ for 1 min.

해조류를 이용한 Cu(II) 및 Zn(II) 이온의 흡착 및 회수 (Adsorption and Recevery of Cu(II) and Zn(II) Ions by Algal Biomass)

  • 박광하;전방욱;김한수;김영하
    • 분석과학
    • /
    • 제9권4호
    • /
    • pp.373-381
    • /
    • 1996
  • 몇 가지 금속을 제거하기 위한 목적으로 건조된 해조류를 이용하였다. 금속 흡착제로 사용하기 위하여 40~60 mesh의 해조 분말을 칼럼에 충진시킨 후, 금속 용액을 1mL/min의 속도로 흘려 보내면서 금속이온을 흡착시켰다. Cu(II), Zn(II) 이온 모두 갈조류인 Sargassum horneri(Turner) C. Agarch보다 녹조류인 Ulva pertusa Kjellman에서 더 많은 흡착량을 보였고 두 해조류 모두 Zn(II) 이온보다 Cu(II) 이온이 더 많이 흡착하였다. 금속의 회수율은 산성 또는 중성일 경우에 켰으며 Zn(II) 이온보다 Cu(II) 이온의 회수율이 다소 높았다.

  • PDF

Examination of Various Metal Ion Sources for Reducing Nonspecific Zinc finger-Zn2+ Complex Formation in ESI Mass Spectrometry

  • Park, Soo-Jin;Park, Sun-Hee;Oh, Joo-Yeon;Han, Sang-Yun;Jo, Kyu-Bong;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • 제3권3호
    • /
    • pp.82-85
    • /
    • 2012
  • The formation of zinc finger peptide-$Zn^{2+}$ complexes in electrospray ionization mass spectrometry (ESI-MS) was examined using three different metal ion sources: $ZnCl_2$, $Zn(CH_3COO)_2$, and $Zn(OOC(CHOH)_2COO)$. For the four zinc finger peptides (Sp1-1, Sp1-3, CF2II-4, and CF2II-6) that bind only a single $Zn^{2+}$ in the native condition, electrospray of apo-zinc finger in solution containing $ZnCl_2$ or $Zn(CH_3COO)_2$ resulted in the formation of zinc finger-$Zn^{2+}$ complexes with multiple zinc ions. This result suggests the formation of nonspecific zinc finger-$Zn^{2+}$ complexes. Zn(tartrate), $Zn(OOC(CHOH)_2COO)$, mainly produced specific zinc finger-$Zn^{2+}$ complexes with a single zinc ion. This study clearly indicates that tartrate is an excellent counter ion in ESI-MS studies of zinc finger-$Zn^{2+}$ complexes, which prevents the formation of nonspecific zinc finger-$Zn^{2+}$ complexes.