• Title/Summary/Keyword: Zn(S/O)

Search Result 1,366, Processing Time 0.035 seconds

Traveling wave reactor atomic layer epitaxy process and characterization of ZnS and Tb-doped ZnS films (Traveling Wave Reactor Atomic Layer Epitaxy를 이용한 ZnS와 ZnS : Tb박막의 성장과 박막 특성의 연구)

  • 윤선진;남기수
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 1998
  • ZnS and TB-doped ZnS (ZnS:Tb) thin films were grown by traveling wave reactor atomic layer epitaxy (AKE) and characterized using materials and surface analysis techniques. $ZnCl_2$, $H_2$S,and tris(2,26,6-tetramethyl-3,5-heptandionato) terbium ($Tb(TMHD)_3$) were used as the precursors in the growth of ZnS:Tb films. The dependence of Cl content in ZnS films on growth temperature was investigated using Rutherford backscattering spectrometry. The Cl content decreased from approximately 9 at.% to 1 at. % as increasing the growth temperature from 400 to $500^{\circ}C$. The segregation of Cl in near surface region was also observed by depth profiling using Auger electron spectroscopy. Scanning electron microscopic studies showed that the ALE-grown ZnS and ZnS:Tb film during ALE process using $Tb(TMHD)_3$was also investigated. Approximately 1 at.% of O in ZnS:Tb(0.5 at.%) film which showed a good crystallinity of hexagonal 2H structure.

  • PDF

An XRD Study on the Structures of Ferrites : Hematite, Ba-ferrite and Zn2Y(Ba2Zn2Fe12O22) (분말 X-선 회절법에 의한 페라이트의 구조 연구 : 헤마타이트, 바륨페라이트, Zn2Y(Ba2Zn2Fe12O22))

  • 신형섭;권순주
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.499-509
    • /
    • 1993
  • Structures of hematite(${\alpha}$-Fe2O3), Ba-ferrite(BaFe12O19) and Zn2Y(Ba2Zn2Fe12O22) were studied by powder X-ray diffraction(XRD) method. Powder XRD patterns of the ferrites were analyzed with the Rietveld method, and the final refined R-factors were RWP<0.01 and RI<0.03. The lattice parameters refined with hexagonal crystal system were a=5.0342${\AA}$, c=13.746${\AA}$ for hematite, a=5.8928${\AA}$, c=23.201${\AA}$ for Ba-ferrite, and a=5.8763${\AA}$, c=43.567${\AA}$ for Zn2Y. In the hematite, the oxygen parameter is 0.3072 and the Fe-O distances in FeO6octahedron are 1.941${\AA}$ and 2.118${\AA}$, close to the single crystal data of Blake et al.. In the Ba-ferrite, the Fe atom in oxygen trigonal bipyramid is displaced 0.155${\AA}$ away from the BaO3 mirror plane into 4e position. In the Zn2Y, 75% of Zn is located at the oxygen terahedral site in S-block.

  • PDF

The Effects of Phosphorus Doped ZnO Thin Films with Multilayer Structure Prepared by Pulsed Laser Deposition Method (PLD법으로 제작된 Phosphorus를 도핑한 ZnO 박막의 다층 구조 도입에 따른 영향)

  • Lim, Sung-Hoon;Kang, Hong-Seong;Kim, Gun-Hee;Chang, Hyun-Woo;Kim, Jea-Won;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.127-130
    • /
    • 2005
  • The properties of phosphorus doped ZnO multilayer thin films deposited on (001) sapphire substrates by pulsed laser deposition (PLD) were investigated by using annealing treatment at various annealing temperature after deposition. The phosphorus doped ZnO multilayer was composed of phosphorus doped ZnO layer and two pure ZnO layers on sapphire substrate. The structural. electrical and optical properties of the ZnOthin films were measured by X-ray diffraction (XRD). Hall measurements and photoluminescence (PL). As the annealing temperature optimized. the electrical properties of the ZnO multilayer showed a electron concentration of $1.56{\times}10^{16}/cm^3$, a resistivity of 17.97 ${\Omega}cm$. It was observed the electrical property of the film was changed by dopant activation effect as thermal annealing process

  • PDF

Synthesis and Structural Properties of YBa2Cu3O7-x Films/ZnO Nanorods on SrTiO3 Substrates

  • Jin, Zhenlan;Park, C.I.;Song, K.J.;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.169-169
    • /
    • 2012
  • The high-temperature superconductor YBa2Cu3O7-x (YBCO) have attached attentions because of a high superconducting transition temperature, low surface resistance, high superconducting critical current density (Jc), and superior superconducting capability under magnetic field. Moreover, the Jc of YBCO superconductors can be enhanced by adding impurities to the YBCO films for vortex-pinning. Understanding and controlling pinning centers are key factors to realize high Jc superconductors. We synthesized vertically-aligned ZnO nanorods on SrTiO3 (STO) substrates by catalyst-free metal-organic chemical vapor deposition (MOCVD), and subsequently, deposited YBCO films on the ZnO nanorods/STO templates using pulsed laser deposition (PLD). The various techniques were used to analyze the structural and interfacial properties of the YBCO/ZnO nanorods/STO hybrid structures. SEM, TEM, and XRD measurements demonstrated that YBCO films on ZnO nanorods/STO were well crystallized with the (001) orientation. EXAFS measurements from YBCO/ZnO nanorods/STO at Cu K edge demonstrated that the local structural properties around Cu atoms in YBCO were quite similar to those of YBCO/STO.

  • PDF

Preparation and Reactivity of ZnO-Al$_2$O$_3$ Desulfurization Sorbents for Removal H$_2$S ($H_2S$제거를 위한 ZnO-$Al_2O_3$ 탈황제의 제조 및 반응특성 연구)

  • 박노국;이종욱;류시옥;이태진;김재창
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.136-141
    • /
    • 2002
  • Advanced zinc-based sorbents, ZA, for Hot Gas Desulfurization (HGD) process in Integrated Gasification Combined Cycle (IGCC) systems were formulated with $Al_2$O$_3$ as support to enhance the reactivity and their reactive characteristics was also investigated in this study. Changes in the physical and chemical properties of the sorbents based on both the mole ratios of ZnO/Al$_2$O$_3$ and the calcination temperatures were examined by a XRD. The results obtained in our desulfurization-regeneration cycle tests demonstrated that degradation of sorbents due to the heat generation could be improved through the optimization of the $Al_2$O$_3$ contents and of the calcination temperatures. From the durability study it is concluded that the prepared ZA sorbents with additives have the desirable features for HGD.

Ag가 코팅된 ZnO nanorod 구조의 광학적 특성 연구

  • Go, Yeong-Hwan;Lee, Dong-Hun;Yu, Jae-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.209-209
    • /
    • 2010
  • 금(Au) 또는 은(Ag) 금속 나노입자의 모양, 크기, 분포 상태를 조절하여 가시광선과 적외선, 자외선 영역에서 강한 표면 플라즈몬 효과을 이용할 수 있는데, 최근 이러한 금속 나노입자의 표면플라즈몬 효과를 이용하여 태양광 소자의 성능을 향상시키는 연구가 매우 활발하게 이루어지고 있다. 그 중, 높은 효율과 낮은 제작비용 그리고 간단한 공정과정의 장점을 갖고 있어서 크게 주목 받고 있는 염료감응태양전지에서도 금(Au) 또는 은(Ag) 금속 나노입자을 이용하기 위한 많은 연구가 진행되고 있다. 그 예로, Au가 코팅된 $TiO_2$ 기반의 염료감응태양전지구조를 제작하여, 입사된 빛이 표면플라즈몬 효과를 통해, Au에서 여기된 전자들이 Au/$TiO_2$ 사에의 schottky 장벽을 통과하여 $TiO_2$의 전도대 전자들의 밀도가 증가하여, charge carrier generating rate을 높여 소자의 광변환 효율의 향상을 증명하였다. 이에 본 연구에서는, $TiO_2$보다 높은 전자 이동도(mobility)와 직선통로(direct path way)의 장점을 갖고 있는 ZnO nanorod에서의 charge carrier generating rate을 높일 수 있도록, 비교적 가격이 저렴한 Ag nanoparticle을 코팅하였다. ZnO nanorod 제작은 낮은 온도에서 간단하게 성장시킬 수 있는 hydrothermal 방법을 이용하였다. 기판위에 RF magnetron 스퍼터를 이용하여 AZO seed layer를 증착한 후, zinc nitrate $Zn(NO_3)_2{\cdot}6H_2O$과 hexamethylentetramines (HMT)으로 혼합된 용액을 사용해 ZnO nanorods를 성장시켰다. 이 후, Ag를 형성할 수 있도록 열증기증착법을 이용하여 코팅하였다. Ag의 증착시간에 따른 ZnO nanorods에서의 코팅된 구조와 형태를 관찰하기 위해 field emission scanning electron microscopy (FE-SEM)을 이용하여 측정하였으며, 결정성을 조사하기 위해 X-ray diffraction (XRD)을 이용하여 분석하였다. 또한 입사된 빛에 의해, 여기된 ZnO 전도대 전자들이 다시 재결합을 통해 방출되는 photoluminescence 양을 scanning PL 장비를 통해 측정하여 Ag가 코팅된 ZnO nanorod의 광특성을 분석하였다.

  • PDF

Characteristics of ZnO thin films by RF magnetron sputtering for FBAR application (RF 마그네트론 스퍼터링을 이용한 FBAR 소자용 ZnO 박막의 특성)

  • Kim, S.Y.;Lee, N.H.;Kim, S.G.;Park, S.H.;Jung, M.G.;Shin, Y.H.;Ji, S.H.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1523-1525
    • /
    • 2003
  • Due to the rapid development of wireless networking system, researches on the communication devices are mainly focus on microwave frequency devices such as filters, resonators, and phase shifters. Among them, Film bulk acoustic resonator (FBAR) has been paid extensive attentions for their high performance. In this research, ZnO thin films were deposited by RF-magnetron sputtering on Al/$SiO_2$/Si wafer and then crystalline properties and surface morphology were examined. To measure crystalline structure and surface morphology X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) were employed. It was showed that crystalline properties of ZnO thin films were strongly dependant on the deposition conditions. As increasing the deposition temperature and the deposition pressures, the peak intensities of ZnO(002) plane were increased until $300^{\circ}C$, then decreased rapidly. At the sputtering conditions of RF power of 213 W and working pressure of 15 m Torr, ZnO film had excellent c-axis orientation, surface morphology, and adhesion to the substrate. In conclusion we optimized smooth surface with very small grains as well as highly c-axis oriented ZnO film for FBAR applications.

  • PDF

Low temperature synthesis of ZnO nanopowders by the polymerized complex method (착체중합법을 이용한 ZnO 나노분말의 저온합성)

  • 권용재;김경훈;임창성;심광보
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.5
    • /
    • pp.229-233
    • /
    • 2002
  • Nano-sized ZnO particles were successfully synthesized at low temperatures by a polymerized complex method via an organochemical route. The polymeric precursors could be prepared using Zn nitrate hexahydrate and a mixed solution of citric acid and ethylene glycol as a chelating agent and a reaction medium. The polymeric precursors were calcined at temperatures from 300 to $700^{\circ}C$ for 3 h, and evaluated for degree of crystallization process, thermal decomposition, surface morphology and crystallite size. The thermal decomposition and crystallization process were analyzed by TG-DTA, FI-IR and XRD. The morphology and crystallite size of the calcined particles were evaluated by scanning electron microscopy (SEM), transmittance electron microscopy (TEM) and Scherrer's equation. Crystallization of the ZnO particles was detected at $300^{\circ}C$ and entirely completed above $400^{\circ}C$. Particles calcined between 400 and $700^{\circ}C$ showed a uniform size distribution with a round shape. The average particle sizes calcined at $400^{\circ}C$ for 3 hour were 30~40nm showing an ordinary tendency to increase with the temperatures.

Characteristics of Organic Solar Cell having an Electron Transport Layer co-Deposited with ZnO Metal Oxide and Graphene using the Cyclic Voltammetry Method (순환전류법을 이용해 ZnO 금속산화물과 Graphene을 동시에 제막한 전자수송층을 갖는 유기태양전지의 특성)

  • Ahn, Joonsub;Han, Eunmi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.1
    • /
    • pp.71-75
    • /
    • 2022
  • Graphene oxide was stirred with a ZnCl2:NaCl electrolyte and electrochemically coated by cyclic voltammetry to simplify the electron transpfer layer film forming process for organic solar cells and to fabricate an organic solar cell having it. The device structure is FTO/ZnO:graphene/P3HT:PCBM/PEDOT:PSS/Ag. Morphology and chemical properties of ETL were confirmed by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. As a result of XPS measurement, ZnO metal oxide and carbon bonding were simultaneously confirmed, and ZnO and graphene peaks were confirmed by Raman spectroscopy. The electrical characteristics of the manufactured solar cell were specified with a solar simulator, and the ETL device coated twice at a rate of 0.05 V/s showed the highest photoelectric conversion efficiency of 1.94%.

Electrical and optical properties of Ag/ZnO multilayer thin film by the FTS (FTS법으로 제작한 Ag/ZnO 박막의 전기적, 광학적 특성)

  • Rim, Y.S.;Kim, S.M.;Son, I.H.;Lee, W.J.;Choi, M.K.;Kim, K.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.102-108
    • /
    • 2008
  • We have studied the properties of Ag/undoped ZnO (ZnO) multilayer thin films deposited on glass substrate by the facing targets sputtering method. In an attempt to find out the optimum conditions of the Ag thin film, which would be coated on the ZnO thin film, we investigated the changes of sheet resistance, transmittance and surface morphology as a function of deposition times and the substrate temperature. The electrical and optical characteristics of Ag/ZnO multilayers were evaluated by a four-point probe, a UV/VIS spectrometer with a spectral range of 390-770 nm, a X-ray Diffractometer (XRD), an atomic force microscope (AFM) and a Field Emission Scanning Electron Microscope (SEM), respectively. We were able to prepare the Ag/ZnO multilayer thin film with sheet resistance of 9.25 $\Omega/sq.$ and transmittance of over 80% at 550nm.