• Title/Summary/Keyword: Zirconia post

Search Result 96, Processing Time 0.028 seconds

FINITE ELEMENT ANALYSIS OF THE INFLUENCE OF ESTHETIC POSTS ON INCISORS (심미 포스트가 전치에 미치는 응력과 변위에 관한 삼차원 유한요소법적 분석)

  • Kwon Tae-Hoon;Hwang Jung-Won;Kim Sung-Hun;Shin Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.582-595
    • /
    • 2003
  • Statement of problem : Most posts are metallic, but in response to the need for a post that possesses optical properties compatible with an all-ceramic crown. an esthetic post has been developed. Although there have been many studies about the esthetic post materials, 3-dimensional finite element studies about the stress distribution of them are in rare. Purpose : The purpose of this study is to investigate comparatively the distribution of stresses of the restored, endodontically treated maxillary incisors with the esthetic post materials and the displacement on the cement layer on simulated occlusal loading by using a 3-dimensional finite element analysis model. Material and method : Four 3-dimensional finite element models were constructed in a view of a maxillary central incisor, a post, a core, and the supporting tissues to investigate the stresses in various esthetic posts and cores and the displacement on the cement layer (Model 1 ; Cast gold post and core, Model 2 ; Glass fiber post with composite core, Model 3 ; Zirconia post with composite core. Model 4 ; Zirconia post with ceramic core). Force of 300N was applied to the incisal edge and the cingulum (centric stop point) with the angle of 135-degree to the long axis of the tooth. Results : 1. The stresses and displacement on the incisal edge were higher than on the cingulum 2. The stresses in dentin were the highest in Model 2 (Glass fiber post with composite core), and the second was Model 3, the third Model 1, and the lowest Model 4. 3. The stresses in post and core were the highest in Model 4 (Zirconia post with ceramic core), and the second was Model 1, the third Model 3, and the lowest Model 2. 4. The displacement on the cement layer was the highest in Model 2 (Glass fiber post with composite core), and the second was Model 3, the third Model 1, and the lowest Model 4. Conclusion : When a functional maximum bite force was applied, the distribution of stresses or the esthetic post and core materials and the displacement on the cement layer were a little different. It seems that restoring extensively damaged incisors with esthetic post and core materials would be decided according to the remaining tooth structure.

The effect of various polishing systems on surface roughness and phase transformation of monolithic zirconia

  • Caglar, Ipek;Ates, Sabit Melih;Duymus, Zeynep Yesil
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.132-137
    • /
    • 2018
  • PURPOSE. The purpose of this study was to evaluate and compare three polishing systems on the surface roughness and phase transformation of monolithic zirconia. MATERIALS AND METHODS. 100 disk shaped specimens (10 mm diameter, 3 mm thickness) were fabricated from monolithic zirconia blocks. 20 specimens were left as a control group and remaining specimens were grinded by diamond bur to simulate the occlusal adjustments. Grinded specimens were randomly divided into 4 groups: group G (no polishing), group M (Meisinger, zirconia polishing kit), group E (EVE Diacera, zirconia polishing kit), and group P (EVE Diapol, porcelain polishing kit). Surface roughness was measured with profilometer and surface topography was observed with SEM. XRD analysis was performed to investigate the phase transformation. Statistical analysis was performed with one-way ANOVA and Tukey's post hoc tests at a significance level of P=.05. RESULTS. All polishing groups showed a smoother surface than group G. Among 3 polishing systems, group M and group E exhibited a smoother surface than the group P. However, no significant differences were observed between group M and group E (P>.05). Grinding and polishing did not cause phase transformations in zirconia specimens. CONCLUSION. Zirconia polishing systems created a smoother surface on zirconia than the porcelain polishing system. Phase transformation did not occur during the polishing procedure.

The metameric effect of monolithic zirconias with varying yttrium ratios

  • Mehmet Ejder Guven;Ozlem Kara
    • The Journal of Advanced Prosthodontics
    • /
    • v.16 no.1
    • /
    • pp.48-56
    • /
    • 2024
  • PURPOSE. To evaluate the metameric disparities among monolithic zirconia materials with differing yttrium compositions across various lighting conditions. MATERIALS AND METHODS. Thirty-six square-shaped zirconia samples measuring 10 × 10 × 0.5 mm were prepared from monolithic zirconia materials with three different yttrium contents. A 0.2 mm thick layer of polymerized dual-polymerizable self-adhesive resin cement was created using a silicone mold with the same dimensions as the prepared zirconia specimens. To evaluate metamerism, color measurements were conducted using a spectrophotometer device on a neutral gray background in a color measurement cabinet that offers four different illumination environments. All samples underwent aging by subjecting them to 10000 thermal cycles using a thermal cycle tester. Following thermal aging, color measurements were taken once more, and the data were recorded using the CIE L*, a*, b* color system. Two-way ANOVA and Post-hoc Bonferroni tests were employed to analyze the data. RESULTS. It was observed that there was no statistical difference among the color measurements made in different illumination environments of the monolithic zirconia ceramics used to evaluate metamerism (P > .05). This observation remained consistent both before and after thermal aging. After thermal aging, the color of monolithic zirconia materials exhibited a tendency towards red and yellow hues, accompanied by a decrease in brightness levels. CONCLUSION. It can be stated that different illumination conditions did not affect the metamerism of monolithic zirconia materials, but there was a color change in monolithic zirconia materials after a thermal aging period equivalent to one year.

In vitro study of microleakage of endodontically treated teeth restored with different adhesive systems and fiber-reinforced posts (다양한 접착시스템을 이용하여 섬유 강화형 포스트로 수복한 치아에서의 미세누출에 관한 연구)

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: While studies have examined microleakage in endodontically treated teeth restored with posts, microleakage among post and adhesive systems remains a concern. This study compared the sealing properties of 3 adhesively luted post systems. Materials and methods: Thirty-six endodontically treated permanent maxillary central incisors were divided into 3 groups: Zirconia-glass fiber, Quartz-glass fiber, Polyethylene fiber posts. Post space was prepared and each post was adhesively luted with 3 systems. The specimens were separately immersed in freshly prepared 2% methylene blue solution for 1 week. The cleaned specimens were then embedded in autopolymerizing acrylic resin. The root portion of tooth were horizontally sectioned into three pieces (apical, middle, and coronal portions). An occlusal view of each section was digitally photographed with a stereomicroscope. The methylene blue-infiltrated surface for each specimen was measured. Dye penetration was estimated as the ratio of the methylene blue-infiltrated surface to the total dentin surface. Results: No significant differences were found among post types. The variables of middle section and 3-stage adhesive produced significant differences in microleakage between the following post pairs: zirconia-glass fiber versus quartz-glass fiber, zirconia-glass fiber versus polyethylene fiber, and quartz-glass fiber versus polyethylene fiber (P<.05). There were significant differences between the apical and coronal sections of each post type, and between apical versus middle sections of quarze-glass fiber and polyethylene fiber posts (P<.05). Conclusion: No significant differences were found among post types. The 3-stage adhesive produced significant differences in microleakage between the following post pairs.

A Finite Element Analysis of Incisors with Different Material Combinations of a Post and a Core (기둥(Post)과 핵(Core)의 이종재료 조합에 의한 치아의 유한요소해석)

  • Kang, Min-Kyu;Tak, Seung-Min;Lee, Seok-Soon;Seo, Min-Seock;Kim, Hyo-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.474-481
    • /
    • 2011
  • The purpose of this study was to investigate the effect of rigidity of post core systems on stress distribution by the finite element stress analysis method. Three-dimensional finite element models simulating an endodontically treated maxillary central incisor restored with a zirconia crown were prepared. Each model contained cortical bone, trabecular bone, periodontal ligament, 4mm apical root canal filling, and post-and-core. A 50N static occlusal load was applied to the palatal surface of the crown with a $60^{\circ}$ angle to the long axis of the tooth. And three parallel type post (zirconia, glass fiber and stainless steel) and two core (Paracore and Tetric ceram) materials were evaluated, respectively. The differences in stress transfer characteristics of the models were analyzed. von Mises stresses were chosen for presentation of results and maximum displacement and hydrostatic pressure were also calculated. For the Result of the research, the model applied glass fiber to post material has lowest von Mises stress and it is suitable for material of post core systems.

Measure of shade differences according to the concentration of dental zirconia coloring liquid (치과용 지르코니아 코어에서 착색농도에 따른 색조측정)

  • Bae, Eun-Jeong;Lee, Hee-Jung;Kim, Hae-Young;Kim, Woong-Chul;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.35 no.3
    • /
    • pp.193-200
    • /
    • 2013
  • Purpose: In this study, in order to provide objective standard of the mixed concentration of the zirconia coloring-liquids, compare the shade differences after colored zirconia blocks from different concentrations. Methods: After immersion for 2 minutes zirconia specimen ($1.5{\times}1.5{\times}0.6{\pm}0.01mm$) in coloring-liquids that produced different concentrations, were sintered in furnace dedicated. Then, it was measured in spectrophotometer and Shadepilot. It has been determined mean and standard deviation of the color difference for each group, and verified by one-way ANOVA using the (version12.0) SPSS WIN Program the difference in shade according to the concentration at the significance level of 95% confidence, it conducted a Tukey's multiple range test to post-test. Results: The mean of $L^*$ was decreased toward LN35 group, however the mean of $a^*$ and $b^*$ was increased(p<.05). There is a statistically significant difference in the results of $L^*$ post hoc test of each group was LN15-LN30/LN35, LN20-LN30/LN35, LN25-LN30/LN35, and LN30-LN35 group. The $a^*$ group, it was found that there is a statistically significant difference in all groups for each(p<.05). The $b^*$ group, it was found that there is a statistically significant difference in all groups except the LN25-LN30(p<.05). Conclusion: In order to make effective use of the coloring-liquids of zirconia, the device objective, accurate concentration measurement is required, from the present study, we presented evidence basic to this.

Microhardness of resin cements after light activation through various translucencies of monolithic zirconia

  • Pechteewang, Sawanya;Salimee, Prarom
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.246-257
    • /
    • 2021
  • PURPOSE. This study aimed to investigate the Vickers Hardness Number (VHN) of light- and dual cured resin cements cured through monolithic zirconia specimens (VITA YZ) of various translucencies: translucent (T); high translucent (HT); super translucent (ST); and extra translucent (XT) at 0, 24, and 48 h after curing. MATERIALS AND METHODS. Four zirconia specimens from each translucency were prepared. Two light-cured resin cements (Variolink N LC; VL and RelyX Veneer; RL) and two dual-cured resin cements (Variolink N DC; VD and RelyX U200; RD) were used. The cement was mixed and loaded in a mold and cured for 20 s through the zirconia specimen. The upper surface of cements was tested for VHN using a microhardness tester at 0, 24, and 48 h after curing. The VHN were analyzed using two-way repeated, Brown-Forsythe ANOVA with Games Howell post-hoc analysis and independent t-tests (P < .05). RESULTS. All cements showed significantly higher VHN from 0 h to 24 h (P < .001). At 48 h, the VHN of light-cured cements were significantly lower when cured under the T groups than under XT groups (P = .001 in VL, P = .014 in RL). At each post curing time of each translucency, VD showed higher VHN than VL (P < .05), and RD also showed higher VHN than RL (P < .05). CONCLUSION. The translucency of zirconia has an effect on the VHN for light-cured resin cements, but has no effect on dual-cured resin cements. Dual-cured resin cement exhibited higher VHN than the light-cured resin cement from the same manufacturer. All resin cements showed significantly higher VHN from 0 h to 24 h.

Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia

  • Han, In-Hae;Kang, Dong-Wan;Chung, Chae-Heon;Choe, Han-Cheol;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • PURPOSE. This study compared the effect of three intraoral repair systems on the bond strength between composite resin and zirconia core. MATERIALS AND METHODS. Thirty zirconia specimens were divided into three groups according to the repair method: Group I-CoJet$^{TM}$ Repair System (3M ESPE) [chairside silica coating with $30{\mu}m$ $SiO_2$ + silanization + adhesive]; Group II-Ceramic Repair System (Ivoclar Vivadent) [etching with 37% phosphoric acid + Zirconia primer + adhesive]; Group III-Signum Zirconia Bond (Heraus) [Signum Zirconia Bond I + Signum Zirconia Bond II]. Composite resin was polymerized on each conditioned specimen. The shear bond strength was tested using a universal testing machine, and fracture sites were examined with FE-SEM. Surface morphology and wettability after surface treatments were examined additionally. The data of bond strengths were statistically analyzed with one-way ANOVA and Tamhane post hoc test (${\alpha}$=.05). RESULTS. Increased surface roughness and the highest wettability value were observed in the CoJet sand treated specimens. The specimens treated with 37% phosphoric acid and Signum Zirconia Bond I did not show any improvement of surface irregularity, and the lowest wettability value were found in 37% phosphoric acid treated specimens. There was no significant difference in the bond strengths between Group I ($7.80{\pm}0.76$ MPa) and III ($8.98{\pm}1.39$ MPa). Group II ($3.21{\pm}0.78$ MPa) showed a significant difference from other groups (P<.05). CONCLUSION. The use of Intraoral silica coating system and the application of Signum Zirconia Bond are effective for increasing the bond strength of composite resin to zirconia.

Comparative analysis of transmittance for different types of commercially available zirconia and lithium disilicate materials

  • Harianawala, Husain Hatim;Kheur, Mohit Gurunath;Apte, Sanjay Krishnaji;Kale, Bharat Bhanudas;Sethi, Tania Sanjeev;Kheur, Supriya Mohit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.456-461
    • /
    • 2014
  • PURPOSE. Translucency and colour stability are two most important aspects for an aesthetic dental restoration. Glass ceramic restorations are popular amongst clinicians because of their superior aesthetic properties. In the last decade, zirconia has generated tremendous interest due to its favorable mechanical and biological properties. However, zirconia lacks the translucency that lithium disilicate materials possess and therefore has limitations in its use, especially in esthetically demanding situations. There has been a great thrust in research towards developing translucent zirconia materials for dental restorations. The objective of the study was to evaluate and compare the transmittance of a translucent variant of zirconia to lithium disilicate. MATERIALS AND METHODS. Two commercially available zirconia materials (conventional and high translucency) and 2 lithium disilicate materials (conventional and high translucency) with standardized dimensions were fabricated. Transmittance values were measured for all samples followed by a microstructural analysis using a finite element scanning electron microscope. One way analysis of variance combined with a Tukey-post hoc test was used to analyze the data obtained (P=.05). RESULTS. High translucency lithium disilicate showed highest transmittance of all materials studied, followed by conventional lithium disilicate, high translucency zirconia and conventional zirconia. The difference between all groups of materials was statistically significant. The transmittance of the different materials correlated to their microstructure analysis. CONCLUSION. Despite manufacturers' efforts to make zirconia significantly more translucent, the transmittance values of these materials still do not match conventional lithium disilicate. More research is required on zirconia towards making the material more translucent for its potential use as esthetic monolithic restoration.

Choice of resin cement shades for a high-translucency zirconia product to mask dark, discolored or metal substrates

  • Dai, Shiqi;Chen, Chen;Tang, Mo;Chen, Ying;Yang, Lu;He, Feng;Chen, Bingzhuo;Xie, Haifeng
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.5
    • /
    • pp.286-296
    • /
    • 2019
  • PURPOSE. The aim was to study the masking ability of high-translucency monolithic zirconia and provide guidance in selecting resin luting cements in order to mask discolored substrates. MATERIALS AND METHODS. 160 high-translucency zirconia specimens were divided into 32 groups depending on their thickness and shades. Using five shades of try-in paste, the specimens were luted onto the substrates (Co-Cr, precious-metal, opaque porcelain-sintered Co-Cr, opaque porcelain-sintered precious-metal, and 5M3-shade zirconia). All CIELAB color parameters were measured and statistically analyzed. RESULTS. Zirconia shade and thickness and try-in paste shade affected CIELAB color parameters (P=.000) in different substrates groups, and there were interactions among these factors (P=.000). All five try-in paste shades can be chosen to achieve ${\Delta}E$ values of zirconia with 1.2 - 1.5 mm for masking dark-tooth-like 5M3-shade and zirconia with 1.5 mm for masking precious-metal groups < 2.6. Only suitable try-in paste shades were used, can ${\Delta}E$ values that less than 2.6 be achieved when applied translucent monolithic zirconia with 0.7-1.0 mm for masking dark-tooth-like 5M3-shade and zirconia with 0.7 - 1.2 mm for masking precious-metal groups. CONCLUSION. Choosing suitable resin cement shades is necessary for high-translucency monolithic zirconia to achieve ideal masking ability (${\Delta}E$ < 2.6) on the dark-tooth.