• 제목/요약/키워드: Zinc-ion

검색결과 275건 처리시간 0.026초

지지막을 이용하는 액막 추출기 내에서 아연 이온의 이동 (Transport of Zinc Ion in a Contained Liquid Membrane Permeator with Two Micro-Porous Films)

  • 주창식;이석희;이민규;홍성수;하홍두;정석기
    • 한국환경과학회지
    • /
    • 제9권2호
    • /
    • pp.159-164
    • /
    • 2000
  • For the purpose of development of a liquid membrane permeator which separates metal ions from aqueous solutions continuously and effectively, a continuous membrane permeator with the membrane solution trapped between extraction and stripping phases by two micro-porous hydrophilic films was manufactured. Experimental researches on the separation of zinc ion from aqueous solutions were performed in the liquid membrane permeator with 30 vol % D2EHPA solution in kerosine as liquid membrane. As results, the liquid membrane permeator separates zinc ion from aqueous solutions continuously and effectively in the wide range of operating conditions. A simple mass transfer rate model using equilibrium constant of the extraction reaction for the system used were proposed, and the model was compared with experimental results of separation of zinc ion in the permeator. And the effects of operating factors, such as space time, pH of extraction solution, extraction temperature, on the separation rate of zinc ion in the permeator were experimentally examined.

  • PDF

Examination of Various Metal Ion Sources for Reducing Nonspecific Zinc finger-Zn2+ Complex Formation in ESI Mass Spectrometry

  • Park, Soo-Jin;Park, Sun-Hee;Oh, Joo-Yeon;Han, Sang-Yun;Jo, Kyu-Bong;Oh, Han-Bin
    • Mass Spectrometry Letters
    • /
    • 제3권3호
    • /
    • pp.82-85
    • /
    • 2012
  • The formation of zinc finger peptide-$Zn^{2+}$ complexes in electrospray ionization mass spectrometry (ESI-MS) was examined using three different metal ion sources: $ZnCl_2$, $Zn(CH_3COO)_2$, and $Zn(OOC(CHOH)_2COO)$. For the four zinc finger peptides (Sp1-1, Sp1-3, CF2II-4, and CF2II-6) that bind only a single $Zn^{2+}$ in the native condition, electrospray of apo-zinc finger in solution containing $ZnCl_2$ or $Zn(CH_3COO)_2$ resulted in the formation of zinc finger-$Zn^{2+}$ complexes with multiple zinc ions. This result suggests the formation of nonspecific zinc finger-$Zn^{2+}$ complexes. Zn(tartrate), $Zn(OOC(CHOH)_2COO)$, mainly produced specific zinc finger-$Zn^{2+}$ complexes with a single zinc ion. This study clearly indicates that tartrate is an excellent counter ion in ESI-MS studies of zinc finger-$Zn^{2+}$ complexes, which prevents the formation of nonspecific zinc finger-$Zn^{2+}$ complexes.

첨가제에 따른 변성 스티렌계 열가소성 엘라스토머의 마찰에 의한 표면 파괴 거동 연구 (A Study on Friction-induced Surface Fracture Behaviors of Carboxylic Acid Modified Styrenic Thermoplastic Elastomer as Additives)

  • 전준하;박상민;이진혁;엄기용
    • 접착 및 계면
    • /
    • 제16권3호
    • /
    • pp.95-100
    • /
    • 2015
  • 본 연구에서는 실리카, 산화아연, 아연이온이 코팅된 실리카가 carboxylic acid로 변성된 스티렌계 열가소성 엘라스토머(m-TPS) film의 마찰시 표면 파괴에 미치는 영향을 관찰하였다. 일반 실리카를 첨가한 m-TPS film은 실리카 입자간의 강한 filler-filler interaction에 의한 낮은 분산성 때문에 기계적 강도, 내마모성과 마찰시 표면 파괴가 저하되는 것으로 나타났다. 산화아연 또는 아연이온이 코팅된 실리카를 첨가한 m-TPS는 zinc ion과 carboxylic acid group 간의 ionic cluster 형성을 통하여 기계적 강도, 내마모성과 마찰 시 표면 파괴가 개선되었다. Zinc ion과 carboxylic acid group 간의 ionic cluster 형성은 $1550{\sim}1650cm^{-1}$의 zinc carboxylate group stretch 피크의 FT-IR 분석 결과로 확인하였다.

염화물욕에서 아연도금층의 표면외관과 경도에 미치는 욕조성의 영향 (Effect of the bath composition on the surface appearance and the hardness of zinc deposits from the chloride bath)

  • 김영근;김명수
    • 한국표면공학회지
    • /
    • 제33권5호
    • /
    • pp.339-348
    • /
    • 2000
  • The study was conducted on the effect of bath composition on the surface appearance, the hardness and the crystal orientation of zinc electrodeposits from the chloride bath. (1) The hardness of the zinc electrodeposits from the chloride bath was increased by suppressing mass transfer of zinc through adding the organic additives and the chlorine ion in the electrolyte. (2) The surface whiteness of zinc deposits was decreased due to the change of the preferred orientation from (002) , (103) to (101) , (100) through increasing the organic additives and chlorine ion in the electrolyte. (3) The addition of Cu, Sn, Ni or Co in the chloride bath elevated the hardness of the zinc deposits but darkened the surface whiteness. (4) The optimum condition of the organic additives and the chlorine ion for increasing the hardness of zinc deposits and preventing dark surface ranges 0.3 m1/1 to 0.4 m1/1 and 6.5 mol/1 to 6.8mol/l respectively.

  • PDF

아연-이온 배터리의 에너지 저장 성능 향상을 위한 망간산화물이 코팅된 흑연시트의 제조 (Synthesis of Manganese Oxide Coated Graphite Sheet for Zinc-Ion Batteries with Improved Energy Storage Performance)

  • 이영근;안건형
    • 한국재료학회지
    • /
    • 제31권2호
    • /
    • pp.68-74
    • /
    • 2021
  • Zinc-ion Batteris (ZIBs) are recently being considered as energy storage devices due to their high specific capacity and high safety, and the abundance of zinc sources. Especially, ZIBs can overcome the drawbacks of conventional lithium ion batteris (LIBs), such as cost and safety issues. However, in spite of their advantages, the cathode materials under development are required to improve performance of ZIBs, because the capacity and cycling stability of ZIBs are mainly influenced by the cathode materials. To design optimized cathode materials for high performance ZIBs, a novel manganese oxide (MnO2) coated graphite sheet is suggested herein with improved zinc-ion diffusion capability thanks to the uniformly decorated MnO2 on the graphite sheet surface. Especially, to optimize MnO2 on the graphite sheet surface, amounts of percursors are regulated. The optimized MnO2 coated graphite sheet shows a superior zinc-ion diffusion ability and good electrochemical performance, including high specific capacity of 330.8 mAh g-1 at current density of 0.1 A g-1, high-rate performance with 109.4 mAh g-1 at a current density of 2.0 A g-1, and remarkable cycling stability (82.2 % after 200 cycles at a current density of 1.0 A g-1). The excellent electrochemical performance is due to the uniformly decorated MnO2 on the graphite sheet surface, which leads to excellent zinc-ion diffusion ability. Thus, our study can provide a promising strategy for high performance next-generation ZIBs in the near future.

Strategy for Prevention of Weakly Flocculating Characters in Bottom Brewing Yeast Strains

  • Cheong, Chul;Wackerbauer, Karl;Kang, Soon-Ah
    • Food Science and Biotechnology
    • /
    • 제17권3호
    • /
    • pp.558-563
    • /
    • 2008
  • To prevent weakly flocculating characters of bottom brewing yeast during first fermentation, various technical investigations were carried out using strain of Saccharomyces cerevisiae. It appeared that the propagation at $10^{\circ}C$ promoted the molecular structure and biochemical composition of cell wall in favor of flocculation. The yeast grown at $20^{\circ}C$ by addition of zinc ion also had a stimulating effect on flocculation behavior during first fermentation cycle. The zinc ion did not influence directly on the changes of cell wall in favor of stronger flocculence. The increased fermentation activity of yeast due to addition zinc ion was rather responsible for the intensified flocculation capacity. It was concluded that the weakly flocculating characters of bottom brewing yeast during first fermentation can be solved by using yeast propagated at $10^{\circ}C$ or by means of yeast by addition of zinc ion during propagation.

카르복실화 SBR 라텍스와 산화아연을 이용한 SBS의 내마모성과 데브리스(debris) 개선 연구 (Improvement of Abrasion and Debris on Styrene-Butadiene-Styrene Block Copolymer with Carboxylated SBR Latex and Zinc Oxide)

  • 이진혁;배종우;김정수;윤유미;조남주
    • Elastomers and Composites
    • /
    • 제48권3호
    • /
    • pp.225-231
    • /
    • 2013
  • 본 연구에서는 carboxylated SBR latex와 zinc oxide가 SBS 복합재의 내마모성과 debris 특성 개선에 미치는 영향을 관찰하였다. 실리카를 첨가한 SBS 복합재는 실리카 입자간의 수소 결합에 의한 강한 filler-filler interaction으로 인한 낮은 분산성 때문에 기계적 강도, NBS 내마모성, debris 특성이 전체적으로 감소하는 것으로 나타났다. carboxylated SBR latex를 첨가한 SBS 복합재는 carboxyl group과 실리카의 silanol group간의 결합을 통하여 filler-filler interaction이 감소하고 실리카의 분산성이 증가하기 때문에 기계적 강도, NBS 내마모성, debris 특성이 향상되는 것을 확인 하였다. carboxylated SBR latex와 zinc oxide를 동시에 첨가한 경우, carboxyl group에 의한 실리카의 분산성 향상과 더불어 zinc ion과 carboxyl group간의 ion cluster 형성을 통하여 물성이 크게 증가하였다. Zinc ion과 carboxyl group간의 ion cluster 형성은 $1550{\sim}1650cm^{-1}$의 zinc carboxylate group stretch 피크의 FT-IR 분석 결과로 확인하였다. carboxylated SBR latex와 zinc oxide를 첨가한(SC-4) 복합재의 경우, 인장강도 $156kgf/cm^2$, 신장율 936%, 인열강도 59.4kgf/cm의 우수한 기계적 강도를 나타내었으며, NBS 내마모성은 338%로 가장 우수한 특성을 나타내었다. 또한, 표면 마찰 시에 debris 발생 역시 크게 감소하며, 표면 마찰 저항의 증가로 파도 형태의 마모 특성을 나타내었다.

아연이온이 포함된 ZDBC 촉진제가 실리카로 충전된 천연고무 복합소재의 가황 및 물성에 미치는 영향 (Effect of Zinc Ion Containing ZDBC on the Vulcanization and Mechanical Properties of Silica Filled Natural Rubber)

  • 김성민;김광제
    • 폴리머
    • /
    • 제38권3호
    • /
    • pp.406-410
    • /
    • 2014
  • 아연이온이 포함된 thiuram 구조를 가진 zinc dibutyldithiocarbamate(ZDBC)와 아연이온을 포함하고 있지 않은 thiuram계 촉진제인 tetramethylthiuram disulfide(TMTD), dipentamethylenethiuram tetrasulfide(DPTT)를 실리카가 충전된 천연고무에 첨가하여 가황특성 및 기계적 물성(모듈러스, 인장강도, 신장률)에 미치는 영향을 비교 평가하였다. ZDBC는 가장 빠른 반응개시시간(t10)과 높은 보강성(R.I.), 그리고 marching 거동을 보였다. 메커니즘을 고찰하고 제시하였다.

Peroxynitrite Inactivates Carbonic Anhydrase II by Releasing Active Site Zinc Ion

  • Kim, Young-Mi;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.711-714
    • /
    • 2004
  • Peroxynitrite enters erythrocytes through band 3 anion exchanger and oxidizes cytosolic proteins therein. As a protein associated with band 3, carbonic anhydrase II may suffer from peroxynitrite-induced oxidative damages. Esterase activity of carbonic anhydrase II decreased as the concentration of peroxynitrite increased. Neither hydrogen peroxide nor hypochlorite affected the enzyme activity. Inactivation of the enzyme was in parallel with the release of zinc ion, which is a component of the enzyme's active site. SDS-PAGE of peroxynitrite-treated samples showed no indication of fragmentation but non-denaturing PAGE exhibited new bands with lower positive charges. Western analysis demonstrated that nitration of tyrosine residues increased with the peroxynitrite concentration but the sites of nitration could not be determined. Instead MALDI-TOF analysis identified tryptophan-245 as a site of nitration. Such modification of tryptophan residues is responsible for the decrease in tryptophan fluorescence. These results demonstrate that peroxynitrite nitrates tyrosine and tryptophan residues of carbonic anhydrase II without causing fragmentation or dimerization. The peroxynitrite-induced inactivation of the enzyme is primarily due to the release of zinc ion in the enzyme's active site.