• Title/Summary/Keyword: Zinc removal

Search Result 152, Processing Time 0.03 seconds

A Study on the Treatment of Heavy Metal in Wastewater by Redox Reaction of Cu-Zn Metal Alloy and Adsorption reaction of Al-Silicate (Cu-Zn 금속합금의 산화 환원반응과 Al-Silicate의 흡착반응을 이용한 폐수 중 중금속처리에 관한 연구)

  • Lee, Soo-Jeong;Kim, Jong Hwa;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.441-448
    • /
    • 2016
  • Heavy metal removal study is conducted from synthetic waste water by reduction and oxidation(redox) reaction of Cu-Zn metal alloy and adsorption reaction of aluminium silicate. Heavy metal whose ionization tendency is smaller than zinc are reducted in an aqueous solution, and the concentration of ionized zinc is reduced by adsorption reaction. The average diameter of metal alloy micro fiber is about $200{\mu}m$, and the surface area is wide enough to get equilibrium in a single cycle treatment. A single cycle treatment of redox reaction of Cu-Zn metal alloy, could remove 100.0 % of Cr(III), 98.0 % of Hg, 92.0 % of Sn and 91.4 % of Cu respectively. An ionization tendency of chromium is very close to zinc, but removal efficiency of chromium by redox reaction is significant. This result shows that trivalent chromium ion is expected to generate hydroxide precipitation with $OH^-$ ion generated by redox reaction. Zinc ion generated by redox reaction is readily removed by adsorption reaction of aluminium silicate in a single cycle treatment. Other heavy metal components which are not perfectly removed by redox reaction also showed very high removal efficiency of 98.0 % or more by adsorption reaction. Aluminium ion is not increased by adsorption reaction of aluminium silicate. That means heavy metal ion removal mechanism by adsorption reaction is turned out to be not an ion exchange reaction, but an adsorption reaction.

Characteristics of Growth and Metal Removal in Recombinant Saccharomyces cerevisiae harboring a Metallothionein Gene (Metallothionein 유전자가 도입된 재조합 Saccharomyces cerevisiae의 생육과 금속제거에 대한 특성)

  • 정동환;김대옥서진호
    • KSBB Journal
    • /
    • v.10 no.5
    • /
    • pp.475-481
    • /
    • 1995
  • The effect of metallothionein expression on the metal resistance and removal by recombinant Saccharomyces cerevisiae containing the plasmid pJW9 was investigated. The recombinant strain S. cerevisiae BZ-pJ was constructed by transforming the host strain S. cerevisiae BZ3l-1-7Ba with the gene coding for a metal-binding protein, metallothionein. Introduction of the MT gene yielded an increase in the minimum inhibitory concentration (MIC) of copper more than three times compared with the host strain. The minimum inhibitory concentrations of $Cr^{2+}, Znr^{2+} and Pb^{2+}, $ were not different for the two strains. The recombinant yeast grown in a medium containing 8mM CuSO4 was able to remove copper with a capacity of 18.9mg $Cu^{2+}$/g dry cell. In a mixture of copper and zinc, the presence of copper relieved the toxic effects caused by zinc, resulting in an enhancement of the final cell density and the specific growth rate of the recombinant yeast. The capability to remove copper by the recombinant yeast was linearly proportional to the copper concentrations in the medium. The efficiency of copper removal was rather constant regardless of the initial copper concentrations. The specific removal of zinc was dependent on the zinc concentrations in media, though, and such dependence was not so pronounced as the concentration of copper.

  • PDF

Amount of Spatter in Arc Welding for High-Strength Galvanized Steel According to Shielding Gas Composition (고강도 아연도금 강판의 아크 용접시 보호가스의 비율에 따른 스패터량에 대한 고찰)

  • Jeong, Young-Cheol;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • The need for high-strength galvanized steel has recently increased because of the increased number of car consumers who want improved efficiency and exterior quality. High-strength galvanized steel with high corrosion resistance improves the durability of products and exterior quality. Furthermore, the gilt of zinc does not come off during machining because of the fine adhesive property of zinc. When these are welded, zinc has a lower melting temperature than iron, so zinc is more quickly vaporized than iron. Vaporized zinc can stick to electrodes, which increases spatter in welding transportation. Created spatter can enter the molten pool and develop into inner defects or blowholes and pits. Scattered spatter sticks to the product, which leads to the secondary cost of spatter removal. Therefore, in this study, comparisons of amounts of spatter generated are conducted according to the composition of shielding gas in the MIG and CMT processes to find optimal welding parameters.

A Study on the Removal of Nitrate Nitrogens by Redox Reaction of Zinc Ball (아연볼의 산화·환원 반응을 통한 연속식 질산성질소 처리에 관한 연구)

  • Kim, Joon Hwan;Kim, Jong Hwa;Song, Ju Yeong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.487-494
    • /
    • 2017
  • Since nitrate nitrogen is quite stable in aqueous solution, considerable skill is required to remove it. Low concentrations of nitrate nitrogen are easily removed, while high concentrations of nitrate nitrogen are difficult to remove. This study is to show that nitrate nitrogen in the form of gaseous nitrogen can be removed by using zinc ball with a diameter of about 3mm and to test the removal characteristics of nitrate nitrogen under various reaction conditions. As a result of this study, the treatment efficiency of nitrate nitrogen by continuous treatment with zinc ball was about 80%. However, there is a problem that the wastewater must be maintained in an acidic atmosphere of about pH 2, and the treated wastewater must be neutralized and discharged.

A Study on the Optimum Operating Conditions and Effects of Wastewater Characteristics in Electrochemical Nitrogen Removal Process (질소 제거를 위한 전기화학적 처리 공정의 최적 운전조건 및 폐수 성상에 따른 영향에 관한 연구)

  • Sim, Joo-Hyun;Kang, Se-Han;Seo, Hyung-Joon;Song, Su-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2009
  • This study was performed under four operational conditions for nitrogen removal in metal finishing wastewater. The conditions include electrode gap, reducing agent, the recycling of treated wastewater in 1st step and the simultaneous treatment of nitrate and other materials. Result showed that the removal efficiency of $NO_3{^-}-N$ was highest at the electrode gap of 10 mm. As the electrode gap was shorter than 10 mm, the removal efficiency of $NO_3{^-}-N$ decreased due to increasing in concentration polarization on electrode. And, in case that the electrode gap was longer than 10 mm, the removal efficiency of $NO_3{^-}-N$ increased with an increase in energy consumption. Because hydrogen ions are consumed when nitrate is reduced, reducing reaction of nitrate was effected more in acid solution. As 1.2 excess amount of zinc was injected, the removal efficiency of $NO_3{^-}-N$ increased due to increasing in amount of reaction with nitrate. As the effluent from 1st step in the reactor was recycled into the 1st step, the removal efficiency of $NO_3{^-}-N$ increased. Because the zinc were detached from the cathode and concentration-polarization was decreased due to formation of turbulence in the reactor. The presence of $NH_4{^+}-N$ did not affect the removal efficiency of $NO_3{^-}-N$ but the addition of heavy metal decreased the removal efficiency of $NO_3{^-}-N$. As chlorine is enough in wastewater, the simultaneous treatment of nitrate and ammonia nitrogen may be possible. The problem that heavy metal decrease the removal efficiency of $NO_3{^-}-N$ may be solved by increasing current density or using front step of electrochemical process for heavy metal removal.

Preparation of High Purity ZnO Powder from zinc-bearing waste by the Hydrometallurgical Process (함아연 폐기물로부터 습식법에 의한 고순도 ZnO 분말의 제조)

  • 이재천;이강인;유효신
    • Resources Recycling
    • /
    • v.1 no.1
    • /
    • pp.58-68
    • /
    • 1992
  • A process development for direct synthesis of high pure ZnO powders from zinc-bearing waste was investigated. This waste contains a 55% of zinc and it was extracted by the sulfuric acid(leaching). After removal of iron ion by precipitation from the zinc solution, the purification through a solvent extraction by the use of D2EHPA as an extractant was carried out. Then, loaded zinc in organic solution was stripped and precipitated simultaneously using a precipitant such as oxalic acid. Then, loaded zinc in organic solution was stripped and precipitated simulataneously using a precipitant such as oxalic acid. The synthesized $ZnC_2O_4$ powders by the precipitation stripping method was calcined to obtain more than 99.9% of ZnO powders. The effect of sulfuric acid concentration, leaching time, pulp density on the extraction of zinc was studied and the optimum conditions for the solvent extraction were obtained through the investigation of purification of zinc solution. The size, morphology and size distribution of synthesized $ZnC_2O_4$ powders were studied in terms of oxalic acid concentration, temperature, surfactant added, precipitation time, etc.

  • PDF

EDTA-Enhanced Electrokinetic Removal of Cu and Zn from Contaminated Sandy Soil (동전기 기술과 세척제 EDTA를 이용한 모래 토양으로부터 구리 및 아연의 제거)

  • Lee, Hyo-Sang;Hong, Soon-Myong;Ko, Sung-Hwan;Lee, Ki-Say
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.1
    • /
    • pp.37-45
    • /
    • 2002
  • EDTA-enhanced electrokinetic removal of copper and zinc from contaminated sandy soil was carried out. In desorption equilibrium tests, the required mass ratio of EDTA to metal was 10:1 to obtain over 90% of desorption from soil. The removal of heavy metals with chelating agent EDTA below pH 3 was limited because of EDTA precipitation. In electrokinetic experiments, the pH control at anode chamber was essential and 38% Cu and 56% Zn were removed under 30 mA for 1.5 days. Heavy metal removal was greatly improved by controlling anode and soil pH with circulation of anolyte with NaOH solution, in which >50% heavy metal was removed for 4 days and >70% for 9 days.

  • PDF

Bioremoval of Cadmium(II), Nickel(II), and Zinc(II) from Synthetic Wastewater by the Purple Nonsulfur Bacteria, Three Rhodobacter Species

  • Jin Yoo;Eun-Ji Oh;Ji-Su Park;Deok-Won Kim;Jin-Hyeok Moon;Deok-Hyun Kim;Daniel Obrist;Keun-Yook Chung
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.640-648
    • /
    • 2023
  • The purpose of this study was to determine the inhibitory effect of heavy metals [Cd(II), Ni(II), and Zn(II)] on the growth of Rhodobacter species (Rhodobacter blasticus, Rhodobacter sphaeroides, and Rhodobacter capsulatus) and their potential use for Cd(II), Ni(II), and Zn(II) bioremoval from liquid media. The presence of toxic heavy metals prolonged the lag phase in growth and reduced biomass growth for all three Rhodobacter species at concentrations of Cd, Ni, and Zn above 10 mg/L. However, all three Rhodobacter species also had a relatively high specific growth rate against each toxic heavy metal stress test for concentrations below 20 mg/L and possessed a potential bioaccumulation ability. The removal efficiency by all strains was highest for Cd(II), followed by Ni(II), and lowest for Zn(II), with the removal efficiency of Cd(II) by Rhodobacter species being 66% or more. Among the three strains, R. blasticus showed a higher removal efficiency of Cd(II) and Ni(II) than R. capsulatus and R. sphaeroides. Results also suggest that the bio-removal processes of toxic heavy metal ions by Rhodobacter species involve both bioaccumulation (intracellular uptake) and biosorption (surface binding).

Heavy Metal Detection and Removal in Artificial Wastewater Using Two-Component System Based Recombinant Bacteria (Two-component System 기반 재조합균을 이용한 인공폐수에서의 중금속 인지 및 제거)

  • Ravikumar, Sambandam;Hong, Soon-Ho;Yoo, Ik-Keun
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.187-191
    • /
    • 2012
  • Two-component system (TCS)-based bacterial zinc and copper biosensors, in which green fluorescent protein (GFP) is expressed under the control of zraP and cusC promoter in ZraS/R and CusS/R TCS, were evaluated in artificial wastewater. Bacterial biosensors developed in this study efficiently expressed GFP by the recognition of $Zn^{2+}$ and $Cu^{2+}$ in artificial wastewater. Secondly, TCS-based zinc and copper removing bacteria with the peptide displayed on cell surface were examined in artificial wastewater. Zinc and copper removing bacteria expressed the peptide as a fusion protein such as OmpC-ZBP (zinc binding peptide) and OmpC-CBP (copper binding peptide) on the cell surface when sensing exogenous $Zn^{2+}$ and $Cu^{2+}$ through ZraS/R and CusS/R TCS. The recombinant cell expressing metal-adsorbing peptide could efficiently remove copper and zinc (15 and 18 mg/g dry cell weight, respectively) in artificial wastewater. Therefore, it was demonstrated that the TCS-based recombinant cell for the recognition or removal of heavy metal functions well in artificial wastewater environment.

A Molecular Biotechnology For Removal of Toxic Heavy Metals

  • Bang Sang-Weon;Clark Douglas S.;Keasling Jay D.
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.128-135
    • /
    • 2000
  • The thiosulfate reductase gene (PhsABC) from Salmonella typhimurium was expressed in Escherichia coli in order to produce sulfide from inorganic thiosulfate and precipitate metals as metal sulfide complexes. A 5.1-kb DNA fragment containing the native phsABC and a 3.7-kb DNA fragment, excluding putative promoter and regulatory regions were inserted into expression vectors pTrc99A and pJB866, respectively. Upon expression of phsABC, E. coli DH5$\alpha$ harboring the phsABC constructs showed higher thiosulfate reductase activity and produced significantly more sulfide than the control strain (E. coli DH5$\alpha$) under both aerobic and anaerobic conditions. Among the four constructs, E. coli DH5$\alpha$ harboring pSB74 produced the highest level of thiosulfate reductase and removed most of heavy metals from solution under anaerobic conditions. In a mixture of 100 $\mu$M each of cadmium, lead, and zinc, the strain could remove $99\%$ of the total metals from solution within 10 hours. Cadmium was removed first, lead second, and zinc last. In contrast, a negative control did not produce any measurable sulfide and removed very little metals from solution. These results have important implications for removal of metals from wastewater contaminated with several metals.

  • PDF