• Title/Summary/Keyword: Zinc oxide

Search Result 1,308, Processing Time 0.03 seconds

Effect of Oxygen Binding Energy on the Stability of Indium-Gallium-Zinc-Oxide Thin-Film Transistors

  • Cheong, Woo-Seok;Park, Jonghyurk;Shin, Jae-Heon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.966-969
    • /
    • 2012
  • From a practical viewpoint, the topic of electrical stability in oxide thin-film transistors (TFTs) has attracted strong interest from researchers. Positive bias stress and constant current stress tests on indium-gallium-zinc-oxide (IGZO)-TFTs have revealed that an IGZO-TFT with a larger Ga portion has stronger stability, which is closely related with the strong binding of O atoms, as determined from an X-ray photoelectron spectroscopy analysis.

Electrodeposited Cuprous oxide based p-n junction for photovoltaic devices with atomic layer deposited ZnO layers

  • Baek, Seung-Gi;Lee, Gi-Ryong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.181-182
    • /
    • 2013
  • 저온 공정을 통한 저가형의 태양전지를 만들기 위해 ALD 공정 법으로 Zinc oxide의 전도성을 조절하여 전기 증착법을 통해 성장시킨 Cuprous oxide와 p-n heterojunction을 구성하고 태양전지를 제작하였을 때 최적의 효율을 확인하였다. 전도성이 낮아질수록 전착법과의 p-n junction에서의 Jsc값이 증가하여 100도의 Zinc oxide의 경우 0.13%의 태양전지 효율을 보였다.

  • PDF

Effects of Deposition Thickness and Oxygen Introduction Flow Rate on Electrical and Optical Properties of IZO Films (증착두께 및 산소도입속도가 IZO 필름의 전기 및 광학적 특성에 미치는 영향)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.224-229
    • /
    • 2010
  • Transparent conductive oxide films have been widely used in the field of flat panel display (FPD). Transparent conductive Indium Zinc Oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for Indium Tin Oxide (ITO) films. In this study, using $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10 wt% as a target, IZO films are prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of thickness and $O_2$ introduction flow rate on the optical, electrical, structural properties and surface composition of deposited IZO films were investigated by UV/Visible spectrophotometer, 4-point probe method, SEM, XRD and XPS.

Study on the Seasoning Effect for Amorphous In-Ga-Zn-O Thin Film Transistors with Soluble Hybrid Passivation

  • Yun, Su-Bok;Kim, Du-Hyeon;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.256-256
    • /
    • 2012
  • Oxide semiconductors such as zinc tin oxide (ZTO) or indium gallium zinc oxide (IGZO) have attracted a lot of research interest owing to their high potential for application as thin film transistors (TFTs) [1,2]. However, the instability of oxide TFTs remains as an obstacle to overcome for practical applications to electronic devices. Several studies have reported that the electrical characteristics of ZnO-based transistors are very sensitive to oxygen, hydrogen, and water [3,4,5]. To improve the reliability issue for the amorphous InGaZnO (a-IGZO) thin-film transistor, back channel passivation layer is essential for the long term bias stability. In this study, we investigated the instability of amorphous indium-gallium-zinc-oxide (IGZO) thin film transistors (TFTs) by the back channel contaminations. The effect of back channel contaminations (humidity or oxygen) on oxide transistor is of importance because it might affect the transistor performance. To remove this environmental condition, we performed vacuum seasoning before the deposition of hybrid passivation layer and acquired improved stability. It was found that vacuum seasoning can remove the back channel contamination if a-IGZO film. Therefore, to achieve highly stable oxide TFTs we suggest that adsorbed chemical gas molecules have to be eliminated from the back-channel prior to forming the passivation layers.

  • PDF

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

COMPARATIVE STUDIES ON THE RETENTIVE VALUES OF VARIOUS DENIAL CEMENTS USED TO RETAIN ORTHODONTIC BANDS (교정용 BANDS 접착에 사용되는 각종 치과용 시멘트의 유지력에 관한 비교 연구)

  • Kim, Joo Young;Ryu, Young Kyu
    • The korean journal of orthodontics
    • /
    • v.11 no.2
    • /
    • pp.151-160
    • /
    • 1981
  • The purpose of this study was to compare the retentive values of various dental cements used for cementing the orthodontic bands on the teeth. Sound freshly extracted human premolar teeth were selected for the study. Eleven commercial dental cements (Zinc phosphate, reinforced Zinc-oxide eugenol, Carboxylate and Glass ionomer cements) were handled under standardized conditions. All cemented speciments were then kept in a thermostatic humidor cabinet regulated at $23{\pm}2^{\circ}C$ and more than $95\%$ relative humidity and tested after 24 hours and 1 week each. The force required to remove the cemented orthodontic bands from the teeth was determined on an Instron Universal Testing Machine using a modified specimen holding device with a cross-head speed of 0.20mm/min. The results obtained were as follows: 1, The retentive values of the band cemented with zinc phosphate cements and carboxylate cements were considerably higher than those of the reinforced zinc oxide-eugenol and glass ionomer cements. 2. There was no significant difference between the retentive value of carboxylate cements as compared with zinc phosphate cements. 3. The retentive value of the reinforced zinc oxide eugenol cements was lowest all of the coements. The retentive values expressed for all cements up to at least one week were highly but no significant difference was found between the 24-hour and 7 day time intervals.

  • PDF

Effect of annealing temperature on amorphous indium zinc oxide thin films prepared by a sol-gel spin-coating method

  • Lee, Sang-Hyun;Lee, Seung-Yup;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.15-18
    • /
    • 2012
  • Transparent conductive indium zinc oxide thin films were prepared by spin-coating a sol-gel solution. Zinc acetate dihydrate [$Zn(CH_3COO)_2{\cdot}2H_2O$] and indium acetate [In$(CH_3COO)_3$] were used as starting precursors, and 2-methoxyethanol with 1-propanol as solvents. Upon annealing in a temperature range from 500 to $1000^{\circ}C$, the thin film crystallizes into polycrystalline $In_2O_3$(ZnO). The lowest electrical resistivity was obtained at an annealing temperature of $700^{\circ}C$ as $2{\Omega}{\cdot}cm$. Average optical transmittances were higher than 80% at all annealing temperatures. These experimental results confirm that the sol-gel spin-coating can be a good simplified practical method for forming transparent electrodes.

Boosting up the photoconductivity and relaxation time using a double layered indium-zinc-oxide/indium-gallium-zinc-oxide active layer for optical memory devices

  • Lee, Minkyung;Jaisutti, Rawat;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.278-278
    • /
    • 2016
  • Solution-processed metal-oxide semiconductors have been considered as the next generation semiconducting materials for transparent and flexible electronics due to their high electrical performance. Moreover, since the oxide semiconductors show high sensitivity to light illumination and possess persistent photoconductivity (PPC), these properties can be utilized in realizing optical memory devices, which can transport information much faster than the electrons. In previous works, metal-oxide semiconductors are utilized as a memory device by using the light (i.e. illumination does the "writing", no-gate bias recovery the "reading" operations) [1]. The key issues for realizing the optical memory devices is to have high photoconductivity and a long life time of free electrons in the oxide semiconductors. However, mono-layered indium-zinc-oxide (IZO) and mono-layered indium-gallium-zinc-oxide (IGZO) have limited photoconductivity and relaxation time of 570 nA, 122 sec, 190 nA and 53 sec, respectively. Here, we boosted up the photoconductivity and relaxation time using a double-layered IZO/IGZO active layer structure. Solution-processed IZO (top) and IGZO (bottom) layers are prepared on a Si/SiO2 wafer and we utilized the conventional thermal annealing method. To investigate the photoconductivity and relaxation time, we exposed 9 mW/cm2 intensity light for 30 sec and the decaying behaviors were evaluated. It was found that the double-layered IZO/IGZO showed high photoconductivity and relaxation time of 28 uA and 1048 sec.

  • PDF

Effect of Two Doses of Different Zinc Sources (Inorganic vs. Chelated form) on the Epithelial Proliferative Activity and the Apoptotic Index of Intestinal Mucosa of Early-weaned Pigs Orally Challenged with E. coli K88

  • Mazzoni, Maurizio;Merialdi, Giuseppe;Sarli, Giuseppe;Trevisi, Paolo;Bosi, Paolo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.777-785
    • /
    • 2010
  • The effect of two doses of different sources of zinc, inorganic (zinc oxide) or chelated (zinc glutamate chelate), on morphology and turn-over of the small intestine was assessed in early-weaned pigs orally challenged with enterotoxigenic E. coli K88 (ETEC). Sixty pigs weaned at 21 days were assigned to one of the following 5 diets: control (C); C+Zinc oxide (ZnO), either a 200 or a 2,500 mg Zn/kg dose; or C+zinc chelate with glutamic acid (Glu-Zn), either a 200 or a 2,500 mg Zn/kg dose. On d 2, the pigs were orally inoculated with 1.5 ml of a $10^{10}$ CFU/ml E. coli K88ac O148 suspension. Zinc supplements did not improve the performance of the pigs, but on d 5 faecal excretion of ETEC was reduced, and this was mainly due to high zinc doses (p<0.05). The villous height in the duodenum was improved by the zinc supplements (p<0.01) whatever the source and the level, whereas no effect was seen in the other two tracts of small intestine. The diet did not affect apoptosis and mitosis counts, while ETEC-susceptible pigs had more mitotic cells in the villi than non-susceptible pigs, particularly in the jejunum (p<0.01). The duodenum had fewer mitotic cells in the villi (p<0.05) and in the crypts (p<0.01) and more apoptotic cells in the villi. High dietary doses of ZnO or Zn-Glutamate improve villous height of the duodenum, but not of the jejunum and the ileum, and do not affect the epithelial proliferative activity and apoptotic index of intestinal mucosa of early-weaned pigs orally challenged with ETEC.

Manufacture and characteristic evaluation of Amorphous Indium-Gallium-Zinc-Oxide (IGZO) Thin Film Transistors

  • Seong, Sang-Yun;Han, Eon-Bin;Kim, Se-Yun;Jo, Gwang-Min;Kim, Jeong-Ju;Lee, Jun-Hyeong;Heo, Yeong-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.166-166
    • /
    • 2010
  • Recently, TFTs based on amorphous oxide semiconductors (AOSs) such as ZnO, InZnO, ZnSnO, GaZnO, TiOx, InGaZnO(IGZO), SnGaZnO, etc. have been attracting a grate deal of attention as potential alternatives to existing TFT technology to meet emerging technological demands where Si-based or organic electronics cannot provide a solution. Since, in 2003, Masuda et al. and Nomura et al. have reported on transparent TFTs using ZnO and IGZO as active layers, respectively, much efforts have been devoted to develop oxide TFTs using aforementioned amorphous oxide semiconductors as their active layers. In this thesis, I report on the performance of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer at room temperature. $SiO_2$ was employed as the gate dielectric oxide. The amorphous indium gallium zinc oxides were deposited by RF magnetron sputtering. The carrier concentration of amorphous indium gallium zinc oxide was controlled by oxygen pressure in the sputtering ambient. Devices are realized that display a threshold voltage of 1.5V and an on/off ration of > $10^9$ operated as an n-type enhancement mode with saturation mobility with $9.06\;cm^2/V{\cdot}s$. The devices show optical transmittance above 80% in the visible range. In conclusion, the fabrication and characterization of thin-film transistors using amorphous indium gallium zinc oxides for an active channel layer were reported. The operation of the devices was an n-type enhancement mode with good saturation characteristics.

  • PDF